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Abstract. This paper attempts to utilize experimental results in or-
der to correlate clothing insulation and metabolic rate with indoor tem-
perature. Inferring clothing insulation and metabolic rate values from
ASHRAE standards is an alternative that totally ignores environmental
conditions that actually affect human clothing and activity. In this work,
comfort feedback regarding occupants’ thermal sensation is utilized by
an algorithm that predicts clothing insulation and metabolic rate values.
The analysis of those values reveals certain patterns that lead to the
formulation of two non-linear equations between clothing — indoor tem-
perature and metabolic rate — indoor temperature.The formulation of the
equations is based on the experimental results derived from the thermal
comfort feedback provided by actual building occupants. On trial tests
are presented and conclusions regarding the method’s effectiveness and
limitations are drawn.

Keywords: thermal comfort - metabolic rate - clothing insulation - in-
door temperature - user feedback.

1 Introduction

The main FKuropean objectives require an alternation in energy consumption
behaviour by energy saving. The most challenging task, is that the energy saving
must be achieved with comfortable approaches for the residents. In order to
determine the subjective comfort levels of the occupants there must be a method
for the detection of both indoor climate conditions and occupants estimation.
This indoor climate data is based on sensor generated inputs and it includes
the metering of indoor humidity, indoor temperature and indoor luminance.
The occupants’ estimation is based on users’ feedback about their comfort level
which can be provided by a mobile or web application.

Thermal comfort indicates the human satisfactory perception of the indoor
environment. Environmental and personal conditions must be estimated for peo-
ple to feel comfortable. Thermal comfort is provided by the predicted mean vote
(PMV) [2]. The Standard ISO 7730 [2] defines that the PMV is affected by four
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physical variables, which are air temperature, mean radiant temperature, air hu-
midity and relative air velocity and two personal variables, that are metabolic
rate and clothing insulation.

The physical variables needed for thermal comfort estimation can be effort-
lessly given by technological means like indoor air sensors and indoor humidity
and temperature sensors. Diversely, the personal factors are laborious to be es-
timated. The most precise method to calculate clothing insulation is by thermal
manikins [1]. Another approach for clothing insulation estimation is by using
scientific questionnaires [11].

Metabolic rate is also a difficult factor of the thermal comfort function to be
evaluated. Many studies estimating thermal comfort simply compute PMV by
utilizing activities having low metabolic rates (like seating, relaxing and stand-
ing) [4], [7], [13] when calculating PMV, those activities are ranked based on
ASHRAE tables [6]. This kind of approach is inaccurate as it excludes main
basic indoor activities. Another way to measure metabolic rate is by wearable
or portable metabolic devices. Those devices are expensive and are proven not
accurate enough [12],[9]. As a consequence, they are rarely used.

To overcome all the above issues, initially the thermal comfort is calculated
using an assumption for clothing insulation and metabolic rate based on the
tables provide by ASHRAE [6]. Afterwards, these two factors are predicted based
on user’s feedback for thermal comfort. Consequently, PMV is calculated using
the updated values of clothing insulation and metabolic rate. The assumption is
that indoor temperature affects the way we dress and act in indoor spaces. We
propose a dynamic convergence algorithm, which in case of lack of user feedback,
updates clothing insulation and metabolic rate values progressively according to
indoor temperature.

2 Clothing insulation and metabolic rate estimation

There are 7 points at the thermal sensation scale, according to ASHRAE thermal
comfort scale (in Table 1) [6].

Table 1. ASHRAE thermal comfort scale

Value Sensation

+3 Hot

+2 Warm

+1 Slightly warm
0  Neutral

-1  Slightly Cool
-2 Cool

-3 Cold
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The most commonly used method for computing thermal comfort has been
suggested by Fanger [3]. The final PMV is calculated by a set of equations. All
the equations are described below.

Identification of a skin temperature and sweating rate required for comfort
conditions [10]:

Tsk,Teq =96.3 — 0-156Qmet,heat~ (1)
qsweat,req = 0~42(Qmet,heat - 1843) (2)
dmet,heat = M —w, (3)

where Ty, is the avergae skin temperature (°F'), M is the rate metabolic gener-
ation per unit DuBois surface area (Btu/h ft?), and w is the human work per
unit DuBois surface area (Btu/h ft?).

Upon those conditions Fanger, corelated PMV as a function to the thermal
load L on the body.

L= Gmet,heat (4)
—fahe(Ta —Ta)
—fahr (T — T})
—~156(Wik req — Wa)
_0'42(‘]met,heat - 18.43)
—0.00077TM (93.2 - T,)
—2.78 M (0.0365 — W,),

where clothing temperature is calculated from the required skin temperature:

Ts req — Tc
%ll = fclhc(Tcl - Ta) + fclhr(Tcl - Tr)a (5)
Tsk,req + Rclfcl(tha + hrTr)

Tc = )
: 1 + Rclfcl(hc + hr)

(6)
where

= 1.040.21,; I, < 0.5clo )
=1 1.0540.11 I; > 0.5¢clo ’

B 0.361(Ty — T,)"25
he = max { 0.151VV ’ ®)

h, = 0.7Btu/h ft*°F. (9)

The final equation is given by the correlation between PMV and the thermal
Load [3] and is given by:

PMV = 3.155 (0.303¢~ %M + 0.028) L. (10)
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2.1 Clothing insulation and metabolic rate estimation

Fanger’s PMV equation [3] needs four main factors to be computed: temperature
(T,), humidity (RH), clothing insulation (I.;) and metabolic rate (M). Thus,
thermal comfort is dependent upon those factors:

PMV = (T,,RH, I, M). (11)

Temperature and humidity are received by indoor metering sensors. Clothing
insulation and metabolic rate are initially assumed based on ASHRAE [6] tables.
Consequently, PMV is calculated with two different approaches based on the
existence or lack of the users’ feedback.

In case a user gives feedback, clothing insulation and metabolic rate values are
predicted based on the PMV feedback value. The values of I.;, M are calculated
by solving Fanger’s equation [3], where indoor temperature and humidity are esti-
mated from the time the user feedback is provided.The new I.;, M are calculated
from a pre-trained model that utilizes as inputs the thermal comfort feedback,
the temperature and the humidity. This model calculates I.;, M for selected
values of T, and RH and was trained using Fanger’s “Comfort Equation”[3].
The formulated problem requires the prediction of multiple continuous variables
y; = (M,I) from a vector of k input variables z; = (PMVycedback: Ta, RH).
This is a multi-target regression (MTR) problem so extremely randomized trees
were selected [5] for I.;, M prediction.

The total observations of clothing insulation and metabolic rate values that
are predicted from feedback are correlated to indoor temperature using a non-
linear regression model [5]. The outcome of this regression model is two equations
for clothing insulation and metabolic rate which are both indoor temperature
dependent. The new clothing insulation value is estimated by:

I = f(T,) = 89.279(T,) 592, (12)

And the new metabolic rate value is given by:

M = f(T,) = 3081.9(T,) " **™. (13)

Whenever there is a feedback thermal comfort is estimated utilizing the pre-
dicted clothing and activity values. On the other hand, thermal comfort is esti-
mated utilizing I,; and M that results from the correlation of indoor temperature
to clothing insulation and metabolic rate. The overall flow-chart of the algorithm
is presented in Figure 1:

2.2 Indoor building study

The study takes place in 157 households. The number of the active users is in
average 157. Users are asked "how they feel” regarding their thermal comfort
scale and their feedback is saved along with the exact time it is given. The indoor
conditions from the users’ room are monitored by humidity and temperature
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Fig. 1. Thermal comfort flow chart

sensors and saved every 15 minutes. As soon as the feedback is given, along with
the indoor environmental values, the values of clothing insulation and metabolic
rate that are predicted are updated for each user.

Table 2. Number of users and feedbacks.

Month

Number of users Number of feedbacks

September 2018
October 2018
November 2018
December 2018
January 2019
February 2019
March 2019

12
22
29
24
30
19
13

58
101
201
218
191
207
263

Average indoor temperature is depicted in Figure 2 and outdoor average
temperature is shown in Figure 3. Indoor temperature is not affected by the
outdoor temperature as it has less fluctuations and smaller range of values.
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Fig. 2. Average indoor temperature in oC.
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Fig. 3. Average outdoor temperature

3 Results

The relationship between temperature and clothing insulation has been thor-
oughly examined by Morgan [8], but the indoor environment examined was not
domestic. Moreover, the indoor environment tested (shopping mall, offices) is
an indoor environment that has a dress-code (casual, formal) and clothes worn
are chosen based on the fact that people have to go outside before arriving to
the destination the experiment is done. Our sample refers to indoor clothing
insulation and metabolic rate in households. The results from the calculation of
clothing insulation compared to indoor temperature monitored, are depicted in
Figure 4.
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Fig. 4. Clothing related to indoor monitored temperature.

The relationship between clothing insulation and Indoor temperature is as
expected, inversely proportional. The colder it gets the more clothes someone
is wearing. Statistical analysis of the correlation clothing — indoor Temperature
is given in Table 3. Adjusted R-Square (Table 3 ), is a statistical measure of
how close the data are to the fitted regression line and the p-value tests the
null hypothesis, that the coefficient is equal to zero. When p-value is below the
confidence interval it suggests strong evidence against the null hypothesis.

As seen in Table 3, adjusted R-square’s value is relatively low (0.14) but this
is justified by the fact that clothing is subjective and may differ from person
to person. Morgan’s study [8] adjusted R-square value is 0.24 which is also low
but reveals the same pattern observed in this study, as viewed in Figure 5. The
inclusion of more variables in the model could probably improve R-square but
this is beyond the scope of the current study which attempts a more precise
clothing inference utilizing only temperature measurements.

Table 3. Non-linear regression statistics for clothing insulation.

Nonlinear Regression Statistics  value
Clothing-Indoor Temperature

Adjusted R Square 0.137879952
P-value < 0.01
Observations 2018 1288

The equation that came as a result for the relationship between clothing worn
inside buildings [8] by Morgan compared to the equation in Figure 4, is depicted
in Figure 5 . It is observed that there is a small deviation between the two
lines. This is a remarkable outcome considering the fact that Morgan’s study
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was situated in a different continent, type of indoor environment, number of

observations, season and year. The main assumption is that there is a significant
relationship between indoor temperature and clothing insulation.

Clothing

Qur approach
Morgan Study

Clothing

17 19 21 3 25 27 9

Indoor temperature

Fig. 5. Comparison of our approach and Morgan’s study

Likewise, the relationship between indoor temperature and metabolic rate
is examined in Figure 7. The statistical results are better than the clothing
insulation as the R-square is almost 30 percent (Table 4).

160
M = 3081.9(Ta) 1172

140

Metabolic rate
[=:]
(=]

&0
40
20
0
17 19 21 23 25 27 29
Indoor Temperature

Fig. 6. Metabolic rate related to indoor monitored temperature
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Table 4. Non-linear regression statistics for metabolic rate.

Nonlinear Regression Statistics value
Metabolic rate-Indoor Temperature

Adjusted R Square 0.288332
P-value < 0.01
Observations 2018 1288

The proposed equations are tested for their performance for calculating ther-
mal comfort using real time indoor measurements. Two months were selected.
One with “high” Indoor temperatures and one with “low” indoor temperature.
Afterwards, a random day was selected for both of them. Thermal comfort was
calculated at 15 minute frequency, and the results are depicted in Figure 7. As
both clothing insulation and metabolic rate factors are correlated to indoor tem-
perature the results of thermal comfort are the ideal. For this exact reason PMV
values for high indoor temperatures are close to positive 0 and PMV values for
low temperatures are close to negative 0.

0.4 ——September

03 ——December

02 w

Thermal Comfort

-01
-0.2
o 10 20 30 40 50 B0 70 80 50
Timestamps

Fig. 7. Thermal comfort

4 Conclusions

This paper emphasizes on a dynamic algorithm that estimates thermal com-
fort in indoor environments. Based on the fact that thermal comfort is not only
affected by indoor micro climatic parameters but also by personal psychologi-
cal estimation the model concentrates more on the personal factors needed for
the PMV computation. Both clothing insulation and metabolic rate values are
proven a thorny task for thermal comfort evaluation, so a flexible but still feasible
solution is tested.

Based on the feedback observations the non-linear regression relationship be-
tween clothing insulation and indoor temperatures advocates that indoor tem-
perature is an essential factor of clothing worn inside buildings. Moreover, the
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variability in clothing insulation values in the sample may be explained by the
fact that what we wear is affected by many factors except temperature like gen-
der, age, and cold and heat tolerance. Furthermore, the non-linear regression
relationship between metabolic rate and indoor temperatures also reveals that
temperature is a dominant component of metabolic rate.

It is strongly believed that if the non-linear regression model is fitted individ-
ually and distinctly for every user the relationship between indoor temperature
and personal factors will grow stronger and R-square will be better. After creat-
ing a user profile for even a small range of temperature values, clothing insulation
and metabolic rate would be fitted to the ideal thermal comfort for each user.
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