
enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 1

D 6.6 SW QUALITY ASSESSMENT REPORT

Project title Collaborative Recommendations and Adaptive Control for
Personalised Energy Saving

Project acronym enCOMPASS

Project call EE-07-2016-2017 Behavioural change toward energy efficiency
through ICT

Work Package

WP6

Lead Partner PDX

Contributing Partner(s) PMI, CERTH, GRA, SMOB, SUPSI

Security classification Public (PU)

Contractual delivery date 31/10/2019

Actual delivery date 29/10/2019

Version 1.0

Reviewers SMOB, PMI

Ref. Ares(2019)6689522 - 29/10/2019

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 2

History of changes

Version Date Comments Main Authors
0.1 10/09/2019 First draft: DDP (Deliverable Development Plan) –

definition of the document structure and the
contributions expected from each partner

Laura Scalzo (PDX)

0.2 11/10/2019 PMI contribution: Code quality and performance
testing of the AA and Funergy

Sergio Herrera (PMI)

0.3 15/10/2019 CERTH contribution: code quality testing Stelios Krinidis (CERTH) and
Valia Dimaridou (CERTH)

0.4 16/10/2019 PDX adds its contribution to Testing section and
Appendix

Laura Scalzo (PDX)

0.5 16/10/2019 RE contribution: code quality and testing
information

Gabor Vadasz, Janos Matyas,
Krisztina Tarjanyi (GRA)

0.6 16/10/2019 DE contribution: code quality and testing
information

Marco Derboni (SUPSI)

0.7 17/10/2019 Changed Figure 1 Laura Scalzo (PDX)
0.8 18/09/2019 SMOB contribution: code quality testing Luigi Caldararu (SMOB)
0.90 15/10/2019 PMI contribution S Herrera (PMI)
0.91 21/10/2019 SMOB contribution merging L Scalzo (PDX)
0.92 25/10/2019 Usability test reference addition K Koroleva (EIPCM)
0.93 28/10/2019 Test added and final Integration L. Scalzo (PDX)
1.0 28/10/2019 PMI: final quality check Piero Fraternali, Andrea

Vallan (PMI/FP)

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 3

Disclaimer

This document contains confidential information in the form of the enCOMPASS project findings, work and
products and its use is strictly regulated by the enCOMPASS Consortium Agreement and by Contract no.
723059.

Neither the enCOMPASS Consortium nor any of its officers, employees or agents shall be responsible or
liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

The contents of this document are the sole responsibility of the enCOMPASS consortium and can in no way
be taken to reflect the views of the European Union.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 723059.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 4

TABLE OF CONTENTS
Executive Summary 6

1 Introduction 7

2 Quality and Testing Domain 9

2.1 Code quality Testing 9

2.2 Individual component Testing 11

2.3 Integrated Testing 12

2.4 Functional Testing 13

2.5 Performance and Scalability Testing 13

2.6 Deployment Testing 13

3 Quality Assessment Metrics 14

3.1 Code size metrics 14

3.2 Code Quality metrics 14

3.3 Performance metrics 15

3.4 Reliability metrics 17

4 Deployment and Quality Assurance Tools 19

4.1 Deployment Environment (IDE) 19

4.2 Code Quality Checking Tools 21

4.3 Version Control Tools 24

4.4 Issue Tracker 24

4.5 Performance Testing Tools 25

5 Performed Tests 25

5.1 The Service Integration and Orchestration Component 25

5.2 The Awareness Application for Web and Mobile Access 26

5.3 The Gamification Engine 27

5.4 The Energy Efficiency Console for Utility and Buildings 28

5.5 The Disaggregation Engine 28

5.6 The Notification Engine 29

5.7 The Recommendation Engine 29

5.8 The Inference Engine 30

5.9 Funergy – Digital Game Extention of the Board Game 30

6 Appendix A 31

6.1 Service Integration and Orchestration 31

6.1.1 Service Integration and Orchestration Performance Tests 31

6.1.2 Service Integration and Orchestration Functional Tests 32

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 5

6.2 Gamification engine and Awareness Application (AA) 33

6.2.1 Gamification Engine Performance Tests 33

6.2.2 Awareness Application Functional Tests 35

6.3 Disaggregation Engine 39

6.3.1 Disaggregation Engine Performance Tests 39

6.3.2 Disaggregation Engine Functional Tests 39

6.4 Notification Engine 41

6.4.1 Notification Engine Performance Tests 41

6.4.2 Notification Engine Functional Tests 41

6.5 Recommendation Engine 42

6.5.1 Recommendation Engine Functional Tests 43

6.6 Inference Engine 47

6.6.1 Inference Engine Performance Tests 47

6.7 Funergy 49

6.7.1 Funergy Performance Tests 49

6.7.2 Funergy Functional Tests 51

7 References 53

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 6

EXECUTIVE SUMMARY
This deliverable summarizes the quality aspects of the developed software. As per its description in the
DOW D6.6 SW (Quality assessment report):

SW Quality assessment report: This deliverable is a summary of the findings of the code verification and
application testing procedures which have been used during the development of the platform. It provides
metrics to assess the overall quality, usability1 and reliability of the platform.

The enCOMPASS platform (the infrastructure to collect and organize the energy consumption and sensor
data from end-consumers and public buildings, with the first integration of the user interfaces) includes
component releases that have been rolled out on the Pilot sites of the case studies SES (Locarno,
Switzerland), SHF (Hassfurt, Germany) and WVT (Athens, Greece):

● The Service Integration and Orchestration Component;
● The Awareness Application for web and mobile access (Google and iOS versions);
● The Gamification Engine and the Energy Efficiency Console for Buildings;
● The Disaggregation Engine component;
● The Inference Engine component;
● The Recommendation Engine component;
● The Energy Efficiency game (FUNERGY).

The dependencies of this final deliverable on preceding ones are as follows:

● The architecture and components of the EnCompass platform are described in D6.2 (Platform
Architecture and Design), especially in the section 2 where the EnCompass architecture
specification is detailed. This deliverable reports the quality assurance procedures applied to the
components designed in D6.2. The reader is referred to D6.2 for the terminology and the
explanation of the modules subjected to testing and quality assurance.

● D6.5 (Platform – Final prototype) is the software deliverable containing the final versions of all the
components of the EnCompass platform. The software package is accompanied by a reporting
document, which describes the updates and additions from release R1 to the final release of the
EnCompass platform (R3, due at the end of the project).

1 The results of initial usability tests in the development cycle have been reported in D5.3 First visualization and feedback interfaces and
behavioural game concept, while the final results of the usability evaluation in the pilots are reported in D7.4 Final overall validation and impact
report.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 7

1 INTRODUCTION
From a Software System perspective, the EnCompass Platform should be a scalable integrated Platform,
made of heterogenous components being able to process large sets of raw data and being able to serve a
large base of End Users of Energy Utility Companies. Also, the development of EnCompass lasted for a
considerable period with different members of the Project Consortium being involved in the process.
Adapted to these specifics, the Software Quality Assurance (QA) Strategy was naturally built around the
lifecycle stages of the Platform.

The main phases of Platform development life cycle and their respective QA focus, are:

1. Individual Software Asset Phase. According to Project deliverable “D8.1 Early Exploitation Plan”, in
this incipient phase some individual software components were identified: Funergy digital game,
Awareness Application, Smart Metered Management Data Component (SMMDC). QA during this
phase focused on functional individual component testing and integration testing using mock-up
endpoints;

2. EnCompass Platform Prototype. In this phase, the components were integrated together through a

service integration layer. During this phase, the QA focused on End-to-End integrated tests among
all Platform components;

3. SES, SHF and WVT Demo Cases. The EnCompass Platform has been deployed on three production

software environments hosted by SES in Locarno (Switzerland), SHF in Hassfurt (Germany) and WVT
in Athens (Greece). In this stage, User Experience (UX) based on direct user feedback were agreed
to be central subjects to be monitored. Also, consumption data processing was validated against
End Users;

The Figure 1 presents at a high-level stages of development lifecycle. Even if each of the lifecycle phases
had a central role at strategical level, at the detailed level all other activities related to QA such as unit
testing, functional and non-functional testing, were also performed and monitored.

Due to the live deployments at SES, SHF and WVT Utility Companies, a forking strategy was also applied.
The following structure of the main source code repository was envisioned at Platform Level:

▪ Core repository;
▪ Prototype repository;
▪ SES repository;
▪ SHF repository;
▪ WVT repository.

During the development of the Demo Cases, each change request or bug notification raised at any of the 3
demo sites was classified and inserted appropriately into the Platform code structure: core, prototype or
demo case level.

Production environments of SES, SHF and WVT also raised the challenge of maintaining a test environment
for each Demo Case Production Environment and of releasing packages deployment from the Test
Environment to Production Environment.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 8

Figure 1 - Phases of the EnCompass development lifecycle.

Figure 2– Structure of the EnCompass software repository.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 9

Figure 3– Release deployment flow in the EnCompass use cases.

A change at Core or Prototype level should also be deployed at Demo Case test environment.

A change at Demo Case level should only be tested at Demo Case Test Environment.

Tested Release Packages will be deployed from Demo Case Test Environment to Demo Case Production
Environment.

2 QUALITY AND TESTING DOMAIN

2.1 CODE QUALITY TESTING
A good software system must ensure quality starting from of its building blocks: the quality of source code.
Quality of source code was pursued by adopting best practice coding procedures and by using tools such as
Code Analysers and Code Optimisers (such as JIndent2 by Newforms Technologies and YourKit3) and tools
for automated code generation (such as the WebRatio4 platform).

Coding procedures were exploited to achieve:

● consistent naming conventions;
● consistent code commenting and documentation;
● clear structure of project files;
● clear structure of code layers:

o presentation layer;
o business logic layer;

2
 http://www.newforms-tech.com/products/jindent/about

3
 https://www.yourkit.com/

4
 http://www.webratio.com/

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 10

o data access layer.
Code Analysers and Code Optimiser tools helped to:

● avoid usage of deprecated classes or methods;
● avoid usage of repeated code;
● improve memory management.

Smart Meter and Sensor Data Manager (SMSDM) component was developed using Java based frameworks
as Spring and Camel. The development process was performed using the Integrated Development
Environment (IDE) “Eclipse”, provided by Eclipse Foundation.

The Awareness application and the Gamification Engine were developed using WebRatio, a model-driven
development tool. WebRatio automatically generates the code based on the model designed using the
OMG Flow Modelling language IFML standard5 which automatically ensures the same code quality across
the entire application.

The Funergy mobile application was developed using IFMLEdit6, an online model-driven development tool
for mobile and web applications. IFMLEdit automatically generates NodeJS code based on the model
designed, it is also based on the OMG standard IFML. The model-driven approach ensures the code quality
across the entire application and across several platforms, as in this case the generated code is used on iOS
and Android devices.

The Inference Engine was developed using Python. However, the developed code has been checked
utilizing Pylint7, a tool for testing coding standard (e.g. variable names and well forming, line-code’s length,
imported modules, etc.), error detection (e.g. if modules are imported, if interfaces are implemented.
Hardcoded names and paths, etc.). Thus, the final code has been improved leading to qualified code able to
use it either at windows and/or ubuntu environment.

The Recommendation Engine is a SaaS component, integrated using loose coupling principle. It receives
the data from the encompass platform core in tab separated files transmitted through sftp protocol. The
data transmission is triggered using the http REST API of the platform. The recommendations are returned
to enCOMPASS platform through the REST API in json format.

The RE is implemented in python programming language, and was developed using IntelliJ PyCharm, an
integrated development environment for python. The development of the production code was aided by
the Python code insight tools of PyCharm.

Jupyter Notebook, a web-based interactive environment for statistical modelling, data visualization, and
machine learning, was used for algorithm prototyping.

The Disaggregation Engine was developed using the Integrated Development Environments (IDEs)
“Eclipse”, provided by Eclipse Foundation8, and “PyCharm” (provided by JetBrains9).

Eclipse has been used to develop the integration of the DE module into the orchestration component, while
PyCharm has been used to develop the Disaggregation Engine backend.

5 http://www.ifml.org/
6 https://ifmledit.org/
7 https://www.pylint.org/
8 https://www.eclipse.org/ide/
9 https://www.jetbrains.com/pycharm/

http://www.ifml.org/
https://ifmledit.org/
https://ifmledit.org/
https://www.eclipse.org/ide/
https://www.jetbrains.com/pycharm/

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 11

Both IDEs automate many tasks when writing code: optimize import action, clean unused imports, auto-
generate code, inspect code that detect and correct anomalous code in the project, find and highlight
various problems, locate dead code, find probable bugs, find spelling problems and improve the overall
code structure. All these features improve the quality of the code to an adequate level.

Given that the Disaggregation Engine processes very large amount of data at each call, it is independently
called on an external server while its outcome is joined to the outcome of the other components.
Therefore, the orchestration component needs to connect to the DE backend. This is done through a simple
REST API provided by an Apache web Server10.

The Notification Engine (NE) component was developed using Java based frameworks Spring and Firebase
on the server side and Firebase on the client side. The development process was performed using the
Integrated Development Environment (IDE) “Eclipse”, provided by Eclipse Foundation.

2.2 INDIVIDUAL COMPONENT TESTING
According to the QA Strategy described in the Introduction, each component was initially tested
independently of the other components. Nevertheless, each individual component was developed with the
respect to the agreed interfaces for the integration scenario.

Smart Meter and Sensor Data Manager (SMSDM) component was tested with camel-test modules with
energy consumption and sensor data files (temperature, humidity, luminance, occupancy) provided by the
Utility Companies that are partners in the project. Next, tests related to the functionality of the component
were performed:

- retrieval of the raw files with consumption and sensor data from the Utility;
- processing of consumption files using threads for parallel processing;
- saving of processed data into the database.

Gamification Engine was tested using gamification data from a local database. A large range of functional
tests was performed on the local environment to ensure the coverage of all the services required by the
use cases specified in D2.3 (Functional System Specifications). The performance of the exposed service
API’s was tested using Apache Bench to ensure response time when the system receives request from
several users concurrently.

Awareness Application was tested using consumption and gamification data from a local database. A large
range of functional tests was performed against the local database, covering the use cases specified in D2.3
(Functional System Specifications).

Integrated tests were performed in the second phase of the development lifecycle:

- User registration
- Integration with the Service integration layer
- Access to the platform consumption database

Funergy Application was tested using a local database with 300 questions in 4 languages (English, Italian,
German and Greek) and with the help of a Content Management System. A large range of functional tests
was performed against the local database, covering the game specification defined on D 5.5 (Final

10 https://encompass.idsia.ch/webscript/cgi-bin/disaggregation_engine

https://encompass.idsia.ch/webscript/cgi-bin/disaggregation_engine

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 12

Behavioral Game Concept). The performance of the game backend was tested using Apache Bench to
ensure response time when the system receives request from several users concurrently.

Inference Engine was tested using energy consumption and environmental data coming from the Smart
House located at CERTH (which also is one of the European Digital Innovation Hubs). The CERTH’s smart
house is equipped with energy consumption meters at both central panels, as well as at individual devices.
Furthermore, each room is equipped with all kind of indoor environmental sensors (i.e. temperature,
humidity, CO2, luminance, occupancy, etc.). In general, CERTH’s smart house is equipped with more than
300 smart sensors metering almost everything in it. Finally, a large range of tests was performed on this
data ensuring the accuracy of the output, as well as the quality of the outputs (deliverables D3.2, D3.4,
D3.5, D4.1 and D4.3).

Recommendation Engine was tested using test data from local database. Manual tests aided by several
tools were performed to validate the functionality of the component.

Disaggregation Engine was separately tested in order to assess functionality, reliability, security and
performances of the module. The Disaggregation Engine producer is provided by a REST API, so it was
decided to test the module by sending requests and analysing responses through a collaborator platform
for API development. The tool used is called Postman (provided by Postman Inc.11). The algorithm was
tested by using the UK-DALE dataset (UK Domestic Appliance Level Electricity).

Notification Engine was tested internally with Junit framework using regression tests and manual tests. For
allowing individual testing by other components of the enCOMPASS platform (such as Inference Engine and
Recommendation Engine) a set of testing web services has been published.

2.3 INTEGRATED TESTING
During the Platform Prototype phase of the QA Strategy, end-to-end integration tests were performed. The
integration engine of the Platform was ensured by the Enterprise Service Bus (ESB) component. As stated in
the Description of Work, the Platform architecture was designed as a Service Oriented Architecture. Based
on the Service Architecture, Platform components were designed to interact with each other using
WebServices. Each component exposes and/or consumes WebServices.

The integration tests covered the following domains:

● basic, physical connectivity testing;
● authentication testing;
● end-to-end testing.

Connectivity testing. These tests had the role to ensure that Platform components can connect to the
integration component ESB. Meaning that the IP address and ports of ESB End Points were accessible to
each of Platform’s component. URL names of WebServices exposed by the ESB were tested to be according
to technical specifications.

Authentication testing. These tests had the role to ensure that Platform components can authenticate in
the Platform to perform its designated actions. For example, the User Portal component is authenticated
by the Platform to access energy consumption data.

11

 https://www.getpostman.com/

https://www.getpostman.com/

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 13

These tests also ensured that a non-authenticated access of the Platform was denied. For example, that a
non-authorized application that has network access to the Consumption Service End Point does not have
access to consumption data.

End-to-End testing. These tests overlap with the next testing domain: Functional Testing. In the context of
Integration testing domain, these tests focused on interface testing. Meaning that messages exchanged
respected the format and structure as stated in the technical specifications by all the components involved
in the tested scenario.

2.4 FUNCTIONAL TESTING
Functional tests are defined starting from the functional requirements. Each requirement of the Platform
was translated into one or more Test Cases, which were formalized with the following structure:

Table 1: Test Case structure.

<TC Number> TC Name <TC Name>
Description <Description of the test case>
Pre-Conditions <State of involved components or modules>
Actions <User or System ordered list of actions to be performed during the test>
Expected Result <Description of the expected result after executing the ordered action list>
Actual Result <Description of the actual result if is different from the Expected result>
Test Result <Passed if Expected Result = Actual Result / Failed if Expected Result != Actual Result >

2.5 PERFORMANCE AND SCALABILITY TESTING
For each component of the Platform specific performance and scalability tests were designed and
performed:

Awareness Application. Performance tests targeted:

● Service availability and response time with an increased number of concurrent users;
● Service availability and response time with a large volume of data: Subscribers and Consumption;
● Response time with an increased number of concurrent users and large data volume.

Service Integration layer. Performance tests concerned the availability and response time of exposed Web
Services:

● Stress testing of WebServices.

SMMDC. The performance and scalability tests for this component was related processing of consumption
data files:

● Processing time of large consumption data files;
● Adding a processing node or a storage node in Apache Hadoop architecture.

2.6 DEPLOYMENT TESTING
This testing domain is not related to the functionality or performance of the Platform but to ensure a
correct deployment in the shortest possible time. The deployment plan contains the required steps to be
performed to have an up and running Platform. The deployment plan must also embed environment
specific parameters: machines, IPs, URLs, ports, file system, file structure.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 14

Tests that covered this domain ensured that each deployment type is done with expected results:

● Deployment of Prototype Platform;
● Deployment of SES Demo Case:

o Test Environment;
o Production Environment;

● Deployment of SHF Demo Case:
o Test Environment;
o Production Environment;

● Deployment of WVT Demo Case:
o Test Environment;
o Production Environment;

● What is to be deployed:
o Core repository;
o Deployment specific.

3 QUALITY ASSESSMENT METRICS
After defining the testing domain (what to test), the most adequate QA Metrics were selected to set the
quality standards of software development process.

Following QA Metrics were decided to be monitored during the entire development lifecycle of the
Platform.

3.1 CODE SIZE METRICS

Metrics name Meaning
NCSS (Non-commenting source
statements)

Used to:
 - estimate the order of magnitude of the application: 10k
of lines of code, 10M lines of code;
- estimate the required maintenance effort;
- serve as the basis for various Code Quality metrics.

Number of classes and interfaces Used to:
 - estimate the order of magnitude of the application: 1k of
classes and interfaces, 10k of classes and interfaces;
- estimate the required maintenance effort;
- serve as the basis for various Code Quality metrics

3.2 CODE QUALITY METRICS

Metrics name Unit Meaning
Code Coverage ratio Percent of code that is run when an automated test suite is

performed
Afferent
Couplings

scalar value The number of other packages that depend upon classes
within the package is an indicator of the package's

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 15

responsibility (Apache Commons12)
Efferent
Couplings

scalar value The number of other packages that the classes in the package
depend upon is an indicator of the package's independence
(Apache Commons).

Abstractness ratio The ratio of the number of abstract classes (and interfaces) in
the analyzed package to the total number of classes in the
analyzed package. The range for this metric is 0 to 1, with A=0
indicating a completely concrete package and A=1 indicating a
completely abstract package (Apache Commons).

Instability ratio The ratio of efferent coupling (Ce) to total coupling (Ce / (Ce +
Ca)). This metric is an indicator of the package's resilience to
change. The range for this metric is 0 to 1, with I=0 indicating
a completely stable package and I=1 indicating a completely
instable package (Apache Commons).

Cycles percent Packages participating in a package dependency cycle are in a
deadly embrace with respect to reusability and their release
cycle. Package dependency cycles can be easily identified by
reviewing the textual reports of dependency cycles. Once
these dependency cycles have been identified with JDepend,
they can be broken by employing various object-oriented
techniques (Apache Commons).

3.3 PERFORMANCE METRICS

Metrics name Unit Meaning
Time taken for tests seconds the observation interval
Concurrency Level ratio total execution time of all queries during the

observation interval
Complete requests scalar value number of completed requests during the

observation interval
Failed requests scalar value number of failed requests during the

observation interval
Total transferred bytes number of bytes transferred between client and

server during the observation interval
HTML transferred bytes number of HTML bytes transferred between

client and server during the observation
interval

Requests per second scalar value number of client requests per second during
the observation interval

Time per request seconds mean time to process a request during the
observation interval

Transfer rate scalar value Total transferred / Time taken for tests

Smart Meter and Sensor Data Manager (SMSDM) test:

12

 https://commons.apache.org/proper/commons-daemon/jdepend-report.html

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 16

The performance and scalability tests for this component were related to optimal processing of energy
consumption and sensor data files. The performance testing regarded:

- processing time of large consumption and sensor data files;
- adjusting the amount of processing memory for an optimal processing time.

Gamification Engine Performance test:

The main exposed services of gamification engine were tested, the full detail of the individual tests is
included in the Appendix A.

 Time taken
for tests

(Seconds)

Concurrency
Level

Complete
requests

Failed
requests

Total
transferred

(bytes)

HTML
transferred

(bytes)

Requests
per second

Time per
request

(ms)

Transfer
rate

(kb/s)
AddUsageLog 1.654 10 100 0 45000 18500 60.47 16..546 26.58
getAction 2.467 10 100 0 45200 18500 40.54 24.665 17.90
getActions 2.434 10 100 0 44800 18500 41.08 24.342 17.97
assignActionsToUsers 1.632 10 100 0 46800 18500 61.27 16.32 28
assignExternalAction 1.633 10 100 0 47500 18500 61.23 16.332 28.40
getAreas 1.649 10 100 0 44400 18500 60.64 16.491 26.29
getBadge 1.659 10 100 0 44900 18500 60.27 16.591 26.43
getBadges 1.635 10 100 0 44600 18500 61.17 16.348 26.64
getGoal 1.661 10 100 0 44900 18500 60.19 16.614 26.39
getLeaderboard 1.642 10 100 0 45600 18500 60.89 16.424 27.11
getReward 1.604 10 100 0 45100 18500 62.34 16.040 27.47
getRewards 1.666 10 100 0 44800 18500 60.03 16.658 26.26
getUser 1.663 10 100 0 44900 18500 60.15 16.626 26.37
getUserActions 1.615 10 100 0 48300 18500 61.94 16.94 29.21
getUserBadges 1.657 10 100 0 47000 18500 60.35 16.570 27.70
getUserCredits 1.670 10 100 0 46800 18500 59.90 16.696 27.37
getUserGoals 1.652 10 100 0 46400 18500 60.53 16.520 27.43
getUserRewards 1.670 10 100 0 46400 18500 59.88 16.699 27.13
setGoal 1.653 10 100 0 44200 18500 60.48 16.533 26.11

Funergy Application Backend Performance Test:

The backend services of the Funergy Application were tested, the full detail of the individual tests is
included in the Appendix A.

 Time taken
for tests

(Seconds)

Concurrency
Level

Complete
requests

Failed
requests

Total
transferred

(bytes)

HTML
transferred

(bytes)

Requests
per second

Time per
request

(ms)

Transfer
rate

(kb/s)
getLocalizedQuestion 0.791 10 100 0 30400 4200 126.49 7.906 37.55
getNextQuestion 1.140 10 100 0 34900 12200 87.72 11.400 29.90
getNextQuestionForTag 1.881 10 100 0 34900 12200 53.17 18.806 18.12
getAvailableTags 1.103 10 100 0 268700 243000 90.65 11.031 237.88

Inference Engine Performance Test:

The Inference Engine services were tested:

 Time taken
for tests

(seconds)

Failed
response
per user

Defects
and

failures

Integration
testing Effectiveness System

testing

Operational
acceptance

testing

Completion
rate

Thermal Comfort inference 1.100 0 0 Successful 100% Successful Successful 1

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 17

Visual Comfort inference 0.700 0 0 Successful 100% Successful Successful 1
Occupancy inference 0.300 0 0 Successful 100% Successful Successful 1
Activity Inference 0.500 0 0 Successful 100% Successful Successful 1

Recommendation Engine Performance Test:

From the end-user point of view the Recommendation Engine is an out of process service which operates
outside of the request cycle. It is triggered as a batch process, and it does not provide a HTTP interface. The
above-mentioned performance metrics are therefore not applicable for this component.

Disaggregation Engine Performance test:

Given that the Disaggregation Engine processes very large amount of data at each cycle of execution, it is
independently called on an external server. Some internal tests have been executed in order to assess
functionality, reliability, security and performances of the modules, but since the DE processing is not a
blocking point for the orchestration chain, the mentioned performance metrics are therefore not applicable
for this component.

Notification Engine Performance test:

Delivering push notifications is a critical responsibility of Notification Engine component on behalf of
enCOMPASS platform. In the context of the specific business logic of the components making the platform,
the following parameters have been observed:

● internal messages generated by the platform components
● internal messages transformed into user notifications
● user notifications sent
● user notification delivered
● user notifications open

3.4 RELIABILITY METRICS

Metrics name Unit Meaning
MTBF Time Average Mean Time Between Failure
MTTF Time Average Mean Time to Failure
MTTR Time Average Mean Time to Repair
Availability Percentage Steady state availability.

Software reliability is the probability that software component will work properly in a specified
environment and for a given amount of time. Using the following formula, the probability of failure is
calculated by testing a sample of all available input states. Mean Time Between Failure (MTBF)=Mean Time
To Failure (MTTF)+ Mean Time To Repair (MTTR). Steady state availability represents the percentage the
software is operational, and can be calculate as MTTF/MTBF.

In order to calculate the MTTF, tools are needed to keep track of the errors and crashes of the system.
There are several tools that enable the automatic detection of errors like Firebase Crashlytics, mobile
frameworks provide their own set tools for error detection and issue tracking. In the context of an Android
Application the Google Play console provide the tools to analyse errors over a period of time.

https://en.m.wikipedia.org/wiki/Availability
https://en.m.wikipedia.org/wiki/Availability

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 18

Figure 4 shows an example of an android crash report of the enCOMPASS application, it displays the
occurrences of errors that impacted the application over a period of time. In this example, the observed
period is 30 days and the number of errors is 3, such information can be used to calculate the MTTF.

Figure 4– Android Crash Report

To calculate the MTTR it is necessary to keep track of the code history to identify the time between code
fixes. Modern code versioning systems like GIT and BitBucket provide tools for issue and history tracking
(Figure 5). On GIT web interface, the “commits” view provide the list of code changes including the date the
change was submitted and the description of the fixed error. On projects implementing Agile
methodologies the code changes are submitted to the “Master” branch only after they have been tested
and approved, therefore the list of changes on the master branch should be used as the reference time
track to calculate the MTTR.

During the first six months of the operation of the platform, the Crash Analytics reported 9 errors,
MTTF=480h. The process of identifying, fixing and deploying the solution took on average 24h (MTTR). The
availability of the AA of the system during this period would be approximately of the 95.2%.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 19

Figure 5- GIT Commit History

4 DEPLOYMENT AND QUALITY ASSURANCE TOOLS
In this section, we describe all the Tools used during the development of the EnCompass architecture that
allows the Quality Assurance.

4.1 DEPLOYMENT ENVIRONMENT (IDE)
There are some obvious QA benefits from usage of specialized tools for development:

- Clear code organization and editing leads to a clearer code, solid code architecture, reduced
number of bugs and reduced correction time;

- Automation of tasks such as: code analysis, compiling, packaging and deployment eliminates or
drastically reduces human error that could occur during such tasks;

- They are extendible applications which can add various components that can improve code quality:
Code Analysers and Code Optimisers.

The EnCompass architecture has been developed using 3 IDEs: Eclipse IDE (SMMDC modules) and WebRatio
(Consumer Portal, Gamification Engine, Admin Portal etc), Spyder (Machine learning components).

Eclipse IDE

- The most used Java Enterprise Applications (J2EE) development tool, that has a base workspace
and an extendible architecture that allows integration of various plugins.

- Allowed installation of various plugins that contributed to an integrated development
infrastructure, ensuring quality by providing:

o Version control integration plugin;
o Package building and deployment plugin;
o Code optimisation plugin.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 20

Figure 6 - CheckStyle error report

WebRatio

- An Eclipse based IDE, that shares the same workspace as all the tools and extensions already
available in Eclipse for developing J2EE Applications;

- Uses IFML modelling standard to define the interaction flow between the User and the Application;
- Standard based (IFML) automatically generated code;
- Automatic model checking and quality assurance tool that verifies errors and warning in the IFML

models.

Figure 7 – WebRation Problem Report View.

Spyder

- Python based IDE;
- Offers advanced editing, analysis, debugging, and profiling functionality;

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 21

- Offers data exploration, interactive execution and deep inspection;
- Beyond its many built-in features, its abilities can be extended even further via its plugin system

and API.

4.2 CODE QUALITY CHECKING TOOLS
Code quality was improved by the usage of several tools:

- CheckStyle – Source Code Formatter for Java;
- JDepend – Source Code Analyzer;
- YourKit – Profiling Tool;
- Java NCSS – Source Code Analyzer;
- FindBugs – Bug detector tool;
- Emma – Source Code Analyzer;
- WebRatio – Model Validator;
- Pylint – Source code analyzer.

CheckStyle

- Intelligent line wrapping;
- Scope related indentation;
- Brace style transformation;
- Insertion of parentheses and braces;
- Blank line and white space formatting;
- Semantic source code separation;
- Sorting of source code elements;
- Insertion and substitution of header and footer;
- Conversion between character and end-of-line encodings;
- Javadoc validation, formatting and template-driven generation.

JDepend:

- Traverses Java class file directories and generates design quality metrics for each Java package;
- Allows you to automatically measure the quality of a design in terms of its extensibility, reusability,

and maintainability to effectively manage and control package dependencies.

YourKit

- CPU usage graph showing total, kernel and garbage collector times is always available;
- CPU views present results as call trees, hot spots, method lists, back traces, merged calls and calls

lists;
- Memory usage graphs show heap and non-heap memory pools, GC activity and, if recorded, object

creation rate per-second;
- Comprehensive heap inspection and analysis;
- Object allocation recording to solve garbage collection and memory allocation issues. Available

settings allow to balance between result fullness and profiling overhead. In particular, consider the
unique object counting mode with almost zero overhead;

- Object explorer to inspect individual objects;

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 22

- Garbage collection profiling to estimate garbage collector load, and, if garbage collection takes a
significant amount of time, pin-point the problematic code;

- Thread profiling: monitor thread states and stacks, estimate CPU usage in a time range;
- Deadlock detector;
- Exception profiling: where thrown, of what class and how many;
- Event recording: in addition to low level profiling results such as method calls, the profiler can

record higher level events with their essential properties such as database queries, web requests
and I/O calls. Use built-in probes to recognize typical problems or write your own to inspect
specifics of your application.

Java NCSS

- Metrics can be applied to global-, class-, or function-level;
- Non-Commenting Source Statements (NCSS);
- Cyclomatic Complexity Number (McCabe metric);
- Packages, classes, functions and inner classes are counted;
- Number of formal Javadoc comments per class and method.

FindBugs

- Makes static analysis to look for bugs in Java code;
- It detects bugs like:

o “correctnes bug”: Probable bug, an apparent coding mistake resulting in code that was
probably not what the developer intended;

o “bad practice”: Violations of recommended and essential coding practice. Examples include
hash code and equals problems, cloneable idiom, dropped exceptions, serializable
problems, and misuse of finalize;

o “dodgy”: Code that is confusing, anomalous, or written in a way that leads itself to errors.
Examples include dead local stores, switch fall through, unconfirmed casts, and redundant
null check of value known to be null.

Emma

- Open source toolkit for measuring Java Code Coverage;
- Can instrument classes for coverage offline (before they are loaded) or “on the fly”;
- Can support coverage for: class, method, line, basic block.

WebRatio

The WebRatio platform provides a built-in validation tool for the IFML models, which objective is to ensure
the model consistency and correctness; executing the validation process before the automatic code
generation prevents both code creation and compilation errors and ensure code optimization. The
validation process can be executed at any step of the development process, it provides a list of the
problems found along with the type of problem, the related component, and offers a quick solution for
each problem.
The validation tools classify problems as errors and warnings; “Errors” are inconsistencies in the model that
prevents the code generation, caused by of missing elements or references, duplication of component IDs,
or incomplete cycles in interaction flows.

Some of the most common types of error are:

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 23

● The entity for the component is unspecified: This kind of error indicates that a component of a
form, page or service was not associated with an entity of the database.

● Missing database table for entity: Indicates that the model is referencing an entity that does not
exist in the database, the presence of this error often indicates that the domain model is not
synchronized with the database.

● Missing Home element for site view: This error is generated when a site view is created without a
default page, this page is defined to be displayed with the view is access.

● The custom URL name is duplicated: When a specific URL is created for an element, the validation
process verifies that there no duplicated URL that may create conflicts on the application.

The parameter binding references an input parameter not provided by the flow's target: The validation
process ensures that data binding between elements is consistent, ensuring that the parameter passing
between elements match perfectly and there is no reference to non-existing elements.

Fixing this kind of problems ensures that the generated code will be consistent, and will be optimized by
the generation process since it will not create variable or references that will never be used.

Problems classify by the validation tool as “Warnings”, on the other hand, represent identified situations on
the model or in external sources, such as plugins or coded components, that may result on exception or
unexpected errors during the execution of the code, but do not prevent the code generation.

Most common warnings found are:

● Java Deprecation Error: This warning is common when external components are added to the
platform, the tool validates that the code used in java or groovy sources is consistent with the
version of the platform. Although deprecation does not present a problem for the operation of a
component, it may represent a problem in future versions.

● Reference to Generic Types in Java Sources: As in deprecation, the tool validates correct use of the
components according to the Java version, and encourage the use of generics in Java collections,
although it does not represent an issue for the operation of the component.

● No attributes to display are specified for the component: The tool validates that elements intended
to display information such as list or details, effectively have selected field to be shown on the
interface.

● The component is never used in module: In order to ensure code optimization, the tool warns
about any element that has no assigned behaviour and no interactions with other elements, these
elements should be removed from the project.

● A hidden field should not be modifiable: The tool verifies consistency in the behaviour of form
components, hidden elements should not be displayed in the user interface and should not be
modifiable. Removing the modifiable property from these elements ensure the generated code is
syntactically and conceptually correct.

Warnings do not offer a quick fix option as errors do, but an indication of the element with problem is
provided by the tool.

Once all the errors are resolved, the automatic code generation warranties that the generated code is
correct, efficient and optimal, as it lacks unused code and meaningless variable or relationship.

Pylint

Pylint is a tool searching for errors in Python code. It tries to enforce a coding standard. It can look for
certain type of errors, while it can make recommendations/ suggestions about how particular blocks can be
refactored. Finally, it provides you information about the code's complexity.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 24

Some indicative errors that it can detect are listed below, while a full list can be found at Pylint13:
- “ignore”: Hardcoded names and paths;
- “jobs”: Use multiple processes to speed up;
- “unsafe-loan-any-extension”: Allow loading of arbitrary C extensions. Extensions are imported into

the active Python interpreter and may run arbitrary code.

4.3 VERSION CONTROL TOOLS
As Version Control Tool it has been decided to use Git as distributed Version Control System (VCS) for
tracking changes of the software components making the enCOMPASS platform.

Git main roles were:

- code projects and repositories organization;
- manage version control of source code;
- issue tracking.

Project Key Description

 COMMON Repository
 Common code repositories

EnCompass 1st Prototype
 First prototype of the EnCompass platform

code repositories

 SHF Repository
SHFR SHF Demo Case code repositories

 SES Repository
SESR SES Demo Case code repositories

WVT Repository
WVTR WVT Demo Case code repositories

4.4 ISSUE TRACKER
Issue tracking was performed using Git. Issue tracking system covered the entire quality assurance process
related to code development:

issue reporting;

- issue responsible assignment;
- priority assignment:

o minor
o major

- issue workflow from identification to resolution through various issue statuses:
o open
o on-hold
o duplicated

13 https://pylint.readthedocs.io/en/latest/technical_reference/features.html

https://pylint.readthedocs.io/en/latest/technical_reference/features.html
https://pylint.readthedocs.io/en/latest/technical_reference/features.html
https://pylint.readthedocs.io/en/latest/technical_reference/features.html
https://pylint.readthedocs.io/en/latest/technical_reference/features.html

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 25

o invalid
o closed

- commenting and collaboration;
- file attachment.

Issues are recorded at Repository level.

4.5 PERFORMANCE TESTING TOOLS
Performance Tests have been performed using Apache Benchmark (by Apache Software Foundation). This
utility is a free open-source software that allows to measure the performance of HTTP web servers. It was
used to test the performance of the WebServices API expose by the several components.

The tool allows developers to simulate any number of concurrent users sending any number of requests.

5 PERFORMED TESTS
In this Section we describe how we used the Testing Tools above mentioned to test EnCompass
components and present a few examples of the quality assurance reports generated with the tools and
methods described in the preceding sections. These reports have been used continually during the whole
development lifecycle and have guaranteed the successful management of the EnCompass platform the
deployment of the releases in 3 distinct real-life use cases.

Following the list of EnCompass components described in “D6.5 - PLATFORM IMPLEMENTATION AND
INTEGRATION – FINAL PROTOTYPE” and their testing protocols.

See Appendix A for the complete list of tests and results both to test the Performance and the
Functionalities of each Component.

5.1 THE SERVICE INTEGRATION AND ORCHESTRATION COMPONENT

Code quality: This component has been created using Eclipse. The Code Quality is ensured by the IDEs
features.

Performance and Functional Testing:

The following procedure describes the steps to set up the testing environment for the enCompass backend
services, instantiated on each one of three pilot servers.

This Functional Test Plan consists of three different parts: Service Calculations, Component Orchestration
and Component Messages. For these tasks, the tester will have to access the database and the backend
services’ APIs of each pilot server.

The backend services’ APIs are exposed by a Swagger interface that is accessible on the development and
test server and on each pilot server with specific parameters: http://{server-ip}:port/swagger-ui.html

For each server instance, the tester executes the tasks described below.
1. Service Calculations

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 26

1. Extract into a spreadsheet the corresponding DB values from the tables
meter_consumption, indoor_conditions_humidity, indoor_conditions_temperature and
baseline

2. Calculate the averages, baselines, savings according to specific logic
3. Confront the results against the results provided by the following services exposed by

Swagger:
1. GET /si/users/{id}/consumption
2. GET /si/users/{id}/consumption/summary
3. GET /si/users/{id}/humidity/average
4. GET /si/users/{id}/temperature/average
5. GET /si/users/{id}/baseline
6. GET /si/users/{id}/savings

4. Repeat the operation for all each pilot

2. Component Orchestration
1. Search for the content of the semphore_log table and sort it in descending order by the

timestamp.
2. Identify the component orchestration sessions.
3. Check that the component results save a return code that is not -99 (exception).

3. Component Messages
1. Search for the content of the message_instance table and sort it in descending order by the

timestamp_creation.
2. Identify the messages that have been produced and stored by IE and RE components after

a component orchestration session.

5.2 THE AWARENESS APPLICATION FOR WEB AND MOBILE ACCESS

Code quality: This component has been created using WebRatio, the Code Quality is ensured by WebRatio
automatic code generation mechanism. See section 2.1 Code Quality Testing.

Performance and Functional testing: to perform performance testing on the Awareness Application,
Selenium scripts have been implemented, Functional testing was executed on test cases based on the main
use cases including:

Section Test Case
Login The user successfully login to the application
Tips The user enters the tip section and navigates the

available tips
The user reads a tip and provides feedback about
it
The user reads a tip and watches the video it
contains

Profile The user enters the profile page
The user edits the household information on the
profile page

Achievements The user visualizes his achievements and scrolls
the previously performed actions
The user visualizes the leader board and scrolls

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 27

to see his position
Reward The user enters the reward section and navigates

the available rewards
Consumption The user enters the consumption section and

visualizes its daily consumption
The user enters the consumption page and
navigates the consumption bar changing the
period
The user enters the consumption page and
changes the granularity (daily, weekly, monthly)
and visualizes the corresponding average.

Impact The user enters the goal page and visualize the
progress towards its goal, the user visualizes the
disaggregate consumption information.
The user enters the goal page, selects a new goal
and saves it
The user enters the impact page to visualize its
saving impact, the user selects a different
visualization from the available option, his
impact is displayed with the selected
visualization type
The user enters the comfort page, visualize the
comfort levels of the current month, the user
navigates the comfort levels of the previous
months

5.3 THE GAMIFICATION ENGINE

Code quality: This component has been created using Webratio, the Code Quality is ensured by Webratio
automatic code generation mechanism. See section 2.1 Code quality Testing.
Performance and Functional Testing: Apache Bench tests have been executed on all the exposed
application services.

UserActivityCreditWebServiceREST/AddUsageLog/AddUsageLog
UserActivityCreditWebServiceREST/GetAction/getAction
UserActivityCreditWebServiceREST/GetActions/getActions
UserActivityCreditWebServiceREST/AssignActionsToUsers/assignActionsToUsers
UserActivityCreditWebServiceREST/AssignExternalActionToUsers/assignActionsToUsers
UserActivityCreditWebServiceREST/GetAreas/getAreas
UserActivityCreditWebServiceREST/GetBadge/getBadge
UserActivityCreditWebServiceREST/GetBadges/getBadges
UserActivityCreditWebServiceREST/GetGoal/getGoal
UserActivityCreditWebServiceREST/GetLeaderboard/getLeaderboard
UserActivityCreditWebServiceREST/GetReward/getReward
UserActivityCreditWebServiceREST/GetRewards/getRewards
UserActivityCreditWebServiceREST/GetUser/getUser
UserActivityCreditWebServiceREST/GetUserActions/getActions
UserActivityCreditWebServiceREST/GetUserBadges/getBadges
UserActivityCreditWebServiceREST/GetUserConsumptionGoals/getGoals
UserActivityCreditWebServiceREST/GetUserCredits/getUserCredits

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 28

UserActivityCreditWebServiceREST/GetUserGoals/getUserGoals
UserActivityCreditWebServiceREST/GetUserRewards/getRewards
UserActivityCreditWebServiceREST/SetGoal/setGoal

5.4 THE ENERGY EFFICIENCY CONSOLE FOR UTILITY AND BUILDINGS

Code quality: This component has been created using AngularJS, while the Code Quality is ensured by
Jenkins, which has been used during the developed of the platform.
Performance and Functional Testing: Functional testing on the Energy Efficiency Console for Utility and
Buildings can be performed by various use cases including:

Section Test Case
Login The user successfully login to the platform
Dashboards The user is able to create his/her own

dashboards
The user is able to add at the dashboards his/her
own widgets
The user is able to visualize the consumption
data using different widgets

Comparisons The use is able to perform consumption
comparisons for different periods

Reports The user can create his/her own reports
The user can have the reports periodically
through email
The user can modify existing reports

5.5 THE DISAGGREGATION ENGINE

Code quality: This component has been created using Eclipse and PyCharm, the Code Quality is ensured by
the IDEs features. See section 2.1 Code quality Testing.
Performance and Functional Testing: The Disaggregation Engine (DE) component processes aggregated
consumption data and returns the estimated end-uses of the single devices in a household. The services
provided by this component are the producer and the consumer.
Functional tests implemented were aimed at verifying the functional requirements and specifications, in
order to ensure that they are properly satisfied by the component. For this purpose, a test protocol was
designed both for the producer and the consumer services and a sample of five users was tested (see
Appendix A).
The test protocol implemented in order to ensure that the DE producer service is able to process all the
data retrieved from the database consisted in verifying the presence of one entry for each user in the
encompass_model.disaggregation_data table, downstream the algorithm processing.
The functional test performed in order to ensure that the consumer service works as expected consists of
three basic steps:

1. Verify that at least 10 days of disaggregated data have been computed by the producer service. In
detail this means to check that at least 10 entries were recorded in the database;

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 29

2. Ensure that the sum of the disaggregated consumption of the appliances (fridge, washing machine,
tumble dryer, dishwasher, AC, electric car, electric oven, heat pump, other) for each user over the
30 days is equal to the total consumption over the same period;

3. Verify that the values provided by the consumer service coincide with the sums mentioned above.

5.6 THE NOTIFICATION ENGINE

Code quality: Code quality was implemented using FindBugs for static analysis of the Java code and for bug
detection, Emma for offline coverage of the code and CheckStyle for standardizing and style alignment the
source code. Additionally, JDepend was used for source code analyses such as checking Java class file
directories and generating design quality metrics for each Java package.

Performance and Functional Testing:

Then the following actions have been performed according to the test plan.
1. Creating a notification and posting it to one of the message queues

Open SWAGGER-UI in a browser and call postMessageInstanceservice (@SI Controller - http://server-
IP:port /swagger-ui.html#!/SI_Endpoint/postMessageInstanceUsingPOST_1)
using the following JSON:

{
 "generic_message_oid": 30, //replace 30 with the oid of the notification from the generic_message
table

 "hidden": true,
 "is_static": true,
 "userId": 1 //replace 1 with the userId from the user table
}
Each notification is created based on the generic_message_oid and it has a priority specified by
notification_type.default_priority. The currently assigned priorities are set for testing purpose (Eg.
consumption_keepontrack notification type has a high priority assigned). It is possible to change
the notification type priorities according to the real scenario by going to the notification_type table
and modifying the values in the column 'default_priority'. The only accepted values are low and
high according to the queue’s types.

2. Check the content of the queues
The specific service URL is open in the browser http://server-IP:port/ne/amq/browse

3. Force processing the queues to send the notifications
http://server-IP:port /ne/amq/process

4. Empty the queues and delete the delivered notifications (from the notification_delivery table)

5.7 THE RECOMMENDATION ENGINE

Code quality: this component is implemented in python programming language, and was developed using
IntelliJ PyCharm, an integrated development environment for python. The development of the production
code was aided by the Python code insight tools of PyCharm. The Code Quality is ensured by the IDEs
features.
Jupyter Notebook, a web-based interactive environment for statistical modelling, data visualization, and
machine learning, was used for algorithm prototyping.

about:blank
about:blank
about:blank
about:blank

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 30

Performance and functional testing: For the functional testing of the RE a separate testing environment
was created on SES pilot test instance. One important requirement was set up for RE testing by the
partners: GRA needed to show that the result of the test (ie. the same user receives the same
recommendation based the given dataset) is the same whenever the test is run. As this logic contradicts
with the normal logic of RE, a special testing environment was built (as it is described in 6.5.1) to show the
results on static dataset. However, it worth to note that in practice as the background data is changing the
calculated best recommendation for a given user can be different from the previously calculated one. This
the intended functioning of the RE.

5.8 THE INFERENCE ENGINE

Code quality: This component has been developed at Python, while the Code Quality is ensured by Pylint
tool. See section 2.1 Code quality Testing.
Performance and Functional Testing: The Inference Engine is comprised by four main components, i.e.
visual comfort inference, thermal comfort inference, occupancy inference and activity inference. It works
autonomous, retrieving data from the enCOMPASS DB, while the output is stored again at the DB in order
to be used by other components of the enCOMPASS framework.

5.9 FUNERGY – DIGITAL GAME EXTENTION OF THE BOARD GAME

Code quality: This component has been created using IFMLEdit.org, the Code Quality is ensured by IFML
automatic code generation mechanism.
Performance and Functional Testing: The backend of the application has been tested with Apache Bench,
tests have been executed on all the exposed application services.

Services/ffv/getLocalizedQuestion
Services/ffv/getNextQuestion
Services/ffv/getNextQuestionForTag
Services/ffv/getAvailableTags

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 31

6 APPENDIX A

6.1 SERVICE INTEGRATION AND ORCHESTRATION

6.1.1 Service Integration and Orchestration Performance Tests

Stress tests of the Platform’s WebServices were performed using Apache Benchmark testing tool. For the
list of the services of enCOMPASS see “D6.2 – Platform Architecture and Design”.

In this section who show the results of the Performance and Scalability Tests performed on the service
getConsumptionSummary which returns the summary of consumption for a given user in a specific interval
of time. In this test (see Table 2, Table 3 and Table 4 we performed 3615 requests with a 100 Concurrency
Level (100 requests in parallel).

Table 2: Scalabilty test results for the getConsumptionSummary WebService.

Metric Resut
Document Length 1385 bytes
Concurrency Level 100
Time taken for tests 85.467 seconds

Complete requests 3615

Failed requests: 0
Total transferred 6040665 bytes
HTML transferred 5006775 bytes
Requests per second 42.30 [#/sec] (mean)
Time per request 2364.234 [ms] (mean)
Time per request 23.642 [ms] (mean, across all concurrent requests)
Transfer rate 69.02 [Kbytes/sec] received

Table 3: Connection Times (ms) results for the getConsumptionSummary service performance test.

 min max mean[+/-sd] median SD
Connect 4 31110 59 11 932.5
Processing 24 1690 591 510 291.6
Waiting 24 1687 585 504 290.3
Total 32 31182 650 536 955.8

Table 4: Percentage of the requests served within a certain time (ms) results for the getConsumptionSummary service performance
test.

Percentage Time (ms)
50% 536
66% 650
75% 765
80% 818
90% 1004

http://myencompass.supsi.ch:8081/swagger-ui.html#!/SI_Endpoint/getUserConsumptionSummaryUsingGET

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 32

95% 1265
98% 1462
99% 1584
100% 31182 (longest request)

6.1.2 Service Integration and Orchestration Functional Tests

Examples of Functional tests executed for these components are follow:

Service Calculations

Test Service Calculation
Description The user verify that dates are correct
Pre-Conditions User has access to the database and the backend services’ APIs of each pilot server.
Actions 1. The user extract in an Excel sheet the corresponding DB values from the tables

meter_consumtion, indoor_conditions_humidity,
indor_conditions_temperature and baseline

2. Calculate the averages, baselines, saving according to specific logic
3. Confront the results against the results provided by the following services

exposed by Swagger:
● GET /si/users/{id}/consumption
● GET /si/users/{id}/consumption/summary
● GET /si/users/{id}/humidity/average
● GET /si/users/{id}/temperature/average
● GET /si/users/{id}/baseline
● GET /si/users/{id}/savings

4. Repeat the operation for all the Pilot DBs

Expected Result The values are the same
Actual Result The values are the same
Test Result Passed

Component Orchestration

Test Component Orchestration
Description The user verify that Orchestration works properly
Pre-Conditions User has access to the database and the backend services’ APIs of each pilot server.
Actions 1. Search for the content of the semphore_log table and sort it in descending

order by the timestamp.
2. Identify the component orchestration sessions.
3. Check that the component results save a return code that is not -99

(exception).
4. Ignore import_co2 process outcome that is not ran - it is logged formally only.

Expected Result The return value is valid
Actual Result The return value is valid
Test Result Passed

Component Messages

Test Component Messages
Description The user verify that Messages works properly
Pre-Conditions User has access to the database and the backend services’ APIs of each pilot server.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 33

Actions 1. Search for the content of the message_instance table and sort it on descending
order by the timestamp_creation.

2. Identify the messages that have been produced and stored by IE and RE
components after a component orchestration session.

Expected Result The messages are stored by IE and RE
Actual Result The messages are stored by IE and RE
Test Result Passed

6.2 GAMIFICATION ENGINE AND AWARENESS APPLICATION (AA)

6.2.1 Gamification Engine Performance Tests

The following are examples of the test performed with Apache Bench on some of the services exposed by
the gamification engine:

Service addUsageLog:

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 34

Service getAction:

Service assingActionsToUsers:

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 35

6.2.2 Awareness Application Functional Tests

Examples of Functional tests executed on AA Application are described step by step and the output of each
step is shown.

Test Procedure

TEST 1

Test 1 User logins to the application
Description The user types its credentials, and login to the app that will display the home page.
Pre-Conditions User has received the username and password and has the app installed in the phone.
Actions 1. The user types its credential in the corresponding fields and click the sign in

button
2. The application validates the credentials,

● if they are correct, the session is created, and the application display
the home page

● if they are incorrect, the application notifies the user that there is a
problem with the inserted credentials and remains in the login page.

Expected Result The user is able to login to the application by providing the correct credential and the
home page is displayed.

Actual Result The user is able to login to the application by providing the correct credential and the
home page is displayed.

Test Result Passed

Test 1 output

Figure 8 – On the left, the login page of the encompass application; on the right, the home page of the encompass application is
display after successful login authentication.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 36

TEST 2

Test 2 User access the saving section
Description The user opens the Menu and selects the “Savings” section to see the current status.
Pre-Conditions User has already login to the application and its consumption data are stored.
Actions 1. The user opens the Menu

2. Select “Savings” menu and see the Goal section:
a. The user is able to see its current consumption status, and change its

consumption
Expected Result The user is able to see the current consumption status
Actual Result The user is able to see the current consumption status
Test Result Passed

TEST 2 Output

Figure 9 - On the left, the encompass menu; on the right, the impact section displaying the Goal subsection where users can see the
consumption status.

TEST 3

Test 3 Visualize Inferred Comfort and provide feedback
Description The user opens the Menu and selects the “Savings” section, and goes Comfort subsection

so the inferred comfort level and provide feedback.
Pre-Conditions User has already login to the app and its comfort levels have been estimated by the

Inference Engine.
Actions 1. The user opens the Menu

2. Selects the “Savings” menu, on the Savings section the user selects the
“Comfort” tab.

3. The application displays the savings percentage, the average temperature and

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 37

the humidity, and the inferred comfort level.
4. User can provide feedback about the comfort level by clicking on the “+”

button, and selecting one of the 7 comfort levels available.
5. Then clicks “send” button to save the feedback.

Expected Result The user is able to see the average temperature, humidity and the inferred comfort level.
The user is able to provide feedback about the comfort level.

Actual Result The user is able to see the average temperature, humidity and the inferred comfort level.
The user is able to provide feedback about the comfort level.

Test Result Passed

TEST 3 Output

Figure 10 – On the left, the Comfort section displaying the savings percentage, the average temperature, the average humidity, and
the inferred comfort level. On the right, the comfort feedback section.

TEST 4

Test 4 Read tips
Description The user opens the Menu and selects “Tips” section to see the tips and personal

recommendations.
Pre-Conditions User has already login to the app and tips have been assign to his profile.
Actions 1. The user opens the Menu

2. Selects “Tips” menu and see a list of tips and recommendation to save energy
3. User can click on the next arrow or dot menu to see a different tip.
4. User can provide feedback for each tip, by clicking on the available feedback

options.
5. The user reads a recommendation (by spending 5 seconds on the tips) and the

application assigns 200 points for this action.
6. By providing feedback , the user get 400 points.

Expected Result The user is able to see the list of tips and recommendations and provides feedback to a
tip, the application assigns points for reading the tip and providing feedback

Actual Result The user is able to see the list of tips and recommendations and provides feedback to a

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 38

tip, the application assigns points for reading the tip and providing feedback
Test Result Passed

TEST 4 Output

Figure 11 – On The left, the Tip section showing a tip, the previous and next buttons, and the navigation list. On the right, a tip
showing the tip text, an image, a video, and the feedback options.

TEST 5

Test 5 View the detailed consumption
Description The user opens the Menu and selects the “Consumption” section to see a detailed

consumption information.
Pre-Conditions User has already login to the application and its consumption data have been store on

the db.
Actions 1. The user opens the Menu

2. Select the “Consumption” menu
3. The application display a bar graph with the daily consumption detail.
4. The user can navigate the consumption using the bar at the bottom of the

graph.
5. The user can change the granularity (daily, weekly monthly) by selecting an

option from the dropdown menu.
Expected Result The user is able to see and explore his energy consumption at different levels of

granularity
Actual Result The user is able to see and explore his energy consumption at different levels of

granularity
Test Result Passed

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 39

TEST 5 Output

Figure 12 – The detail consumption section displays the daily consumption information using a bar graph, the user can explore it
consumption by interacting with the graph controls.

6.3 DISAGGREGATION ENGINE

6.3.1 Disaggregation Engine Performance Tests

Internal tests have been executed in order to assess functionality, reliability, security and performances of
the modules, but since the DE processing is not blocking for the orchestration chain, no performance test
results are available for this component.

6.3.2 Disaggregation Engine Functional Tests

The following procedure describes the steps to set up the testing environment for the enCompass backend
services, instantiated on each one of three pilot servers.

This Functional Test Plan consists of Disaggregation Engine tests. For these tasks, the tester will have to
access the database and the backend services’ APIs of each pilot server.

The backend services’ APIs are exposed by the following Swagger interface:

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 40

http://{server-ip}:8081/swagger-ui.html

Examples of Functional tests executed are described in the following section:

Processing

Test Processing
Description The user accesses to the DB and acquires the data
Pre-Conditions The tester will have to access the database and the backend services’ APIs of each pilot

server

Actions Run this query in order to get the list of the daily disaggregated data:
SELECT encompass_model_ses.disaggregation_data.*
FROM encompass_model_ses.disaggregation_data
WHERE datetime_received IN (
 select max(datetime_received) as maxdt
 from encompass_model_ses.disaggregation_data
 where date >= DATE_SUB(now(), INTERVAL 3 DAY)
 AND date <= DATE_SUB(now(), INTERVAL 2 DAY)
 GROUP BY user_oid, date)
AND date >= DATE_SUB(now(), INTERVAL 3 DAY)
AND date <= DATE_SUB(now(), INTERVAL 2 DAY)
order by date desc

Expected Result The user is able to see the entries
Actual Result The user is able to see the entries
Test Result Passed

User Service

Test User Service
Description The user accesses to the DB and verify that data is present for the chosen time period
Pre-Conditions The tester will have to access the database and the backend services’ APIs of each pilot

server

Actions 1. Extract in an Excel sheet the output of this query:
SELECT disaggregation_data.*
FROM encompass_model_ses.disaggregation_data
WHERE datetime_received IN (
select max(datetime_received) as maxdt
from encompass_model_ses.disaggregation_data
where user_oid = <user_oid>
and date >= DATE_SUB(now(), INTERVAL 33 DAY)
AND date <= DATE_SUB(now(), INTERVAL 3 DAY)
GROUP BY date)
AND date >= DATE_SUB(now(), INTERVAL 33 DAY)
AND date <= DATE_SUB(now(), INTERVAL 3 DAY)
AND user_oid = <user_oid>
ORDER BY date DESC

Best case: the query returns 30 entries, this means that the DE has correctly
generated all data in the last 30 days.
Worst case: 0 results, no data generated by the DE.
PASS: at least 10 entries are present (the DE service needs at least 10 days of
disaggregated data in order to provide useful information to the user)

2. Calculate the sum of the columns: fridge, washing_machine, tumble_dryer,
dishwasher, AC, electric_car, electric_oven, heat_pump, other,
total_consumption

about:blank
about:blank
about:blank

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 41

3. Compare the results against the results provided by the following service
exposed by Swagger:
GET /de/getDisaggregatedDataMean (only set the user_oid)
PASS: the results match

Expected Result All steps results are passed
Actual Result All steps results are passed
Test Result Passed

6.4 NOTIFICATION ENGINE

6.4.1 Notification Engine Performance Tests

Post message instance service:

6.4.2 Notification Engine Functional Tests

Examples of Functional tests executed are described in the following:

Test Notification Engine
Description The user can see a notification for incentive recommendation is sent, as well as how it

looks on the app
Pre-Conditions User has received the username and password and has the app installed in the phone.
Actions 1. Login to the AA APP

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 42

2. Enable notifications with high frequency in the App.
3. Ensure the app is allowed to receive notifications from Android.
4. Create a notification following this:

a. Create a notification and post it to one of the message queues
Open SWAGGER-UI into a browser and find postMessageInstance.
Call the service using the following JSON:
{
 "generic_message_oid": 271, // Example of Message OID
 "hidden": true,
 "is_static": false,
 "userId": 1
}

If you send is_static as true the motivation will be appended to the
recommendation’s title, otherwise it won’t.

It may worth executing this message 3 times, to enqueue 3
notifications.

b. Check the content of the queues
c. Force processing the notifications in the queues
d. Notification output is shown on your phone

Expected Result The Notification is received on phone.
Actual Result The Notification is received on phone.
Test Result Passed

An example of how notifications look on the phone is shown in follow screenshot:

6.5 RECOMMENDATION ENGINE
The Recommendation Engine was tested using test data from local database. Manual tests aided
by several tools were performed to validate the functionality of the component.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 43

6.5.1 Recommendation Engine Functional Tests

Preconditions

The following preconditions must be met/done before the testing session by relevant partners.

- Clean enCOMPASS platform installation (no other data is in the relevant tables, but the ones
provided as “Data Set”).

- The test encompass platform installation is configured to connect to the test Recommendation
Engine.

- The test Recommendation Engine is empty, no old data, or calculated data exists in its database.
- To make the Recommendation Engine algorithm deterministic so it will not be dependent on the

time when test will be run, we fixed the date, and the random number generator in the test
deployment (this is the only difference between the test and production version).

Data Set

The input starting database state will be provided in separate document as sql file (this file will contain the
db reset mechanisms, and the data needed in the first step of the Test Procedure)

Expected Results

Because the data set that was generated for testing purposes is the same for all use cases, each use case
can be run individually from start-to-end, or the whole process once, and only the results can be evaluated
for all the use cases.

We chose the following use cases for the test.

Case Case 1 Case 2 Case 3 Case 4 Case 5
Simulated
Condition

The peak
consumption
(consumption
presumably related
to activity) is high
and the household
has a TV set

Humidity is above
50% for at least 2
hours

Base consumption
(consumption
presumably not
related to an
activity) is high and
the household has a
freezer

During the day the
luminance is above
60 for at least an
hour when nobody
is at home

Testing fixed
executable
recommendation

User id (username) 3 (test3) 4 (test4) 5 (test5) 96 (test8) 1 (test1)

Expected
Recommendation in
AA’s Just for You
tab and
Notifications

title: “Not there?
Then switch it off”,
description: “Is the
TV running even
though you are
doing something
different? Turn it
off!” (id:106)

title: “Let the wind
blow”, description:
“Shock ventilate
more often.”
(id: 81)

title: “Fight the ice!”,
description: “Defrost
freezer (e.g. before
vacation) to melt ice
layer.”
(id: 6)

title: “Let's enjoy a
bit of shade”,
description: “To
keep your living
room cool”
(id: 77)

title: “Don't heat
empty spaces!”
description: “Reduce
heating temperature
in the living room to
18 C”
(id: 271)

Expected Time
of the
Recommendation
Notification

2018-08-30 9:00 2018-08-30 9:00 2018-08-30 9:00 2018-08-30 8:00 2018-08-30 at 8:00

User Motivation 3 (This will help you
to collect more
energy)

1 (This will help you
to save money)

2 (This will help to
protect the
environment)

2 (This will help to
protect the
environment)

1 (This will help you to
save money)

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 44

As it is visible, we tested different test users with different background conditions (ie. dataset) and we also
tested whether the so called semi-executable recommendations can be applied.

Test Procedure

1. Data Setup (set the user/smart_meter/etc data to a fixed state provided by us)
a) Data set should be imported by resetting the db state to the default starting state by

running the provided sql scripts (or the all-in-one version).

2. Check on AA that users are there with all the data, but they have no recommendations at the
moment. (for simplicity sake we use the web version of the AA available on the relative url:
/community)

a) User data is loaded into the encompass platform:
(Sensor data cannot be shown on the AA)

b) User tips should be empty for each user on the AA:

3. (Run the export for old data - as the user pre-set data is from 2018 august)
a) Call the API which exports all previous old data from enCompass platform to RE backend.

The relative URL for starting the old export data is the same as starting the orchestration
step:

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 45

/re/component/start
But you have to also send the following JSON HTTP POST payload:
{
 ”exportDayCount”: 300
}
(the exportDayCount parameters should be set to include 2018 august)

4. Manually start the orchestration on enCompass platform, which will run all the previous

components leading up to Recommendation Engine. (Or just manually start the orchestration step
for RE, as the functionality of the Orchestration as a whole is not the scope of this test)

The relative URL that starts the orchestration step for RE is: /re/component/start
Which must be called as HTTP POST.

5. Recommendation Engine (automatic)
a) Recommendation engine export, and calculation will run as part of the Component

Orchestration. (automatic)
b) You can check semaphore_log table in the main encompass platform main database to see

status codes and check its status code.
c) You can also check the SFTP access provided by GRA for the deployed instance, and check

import status of the export:
1. checking the filename for the date
2. and extension for status:

▪ .go: not yet processed
▪ .processing: under process
▪ .finished: the data is imported to the RE
▪ .failed: there were some problems during the import

6. Check results in EnCompass Platform

a) After Recommendation Engine process is finished you can check results the results for the
different Use Cases in encompass Platform (in DB, or in AA). (See Test Results part of this
document)

b) Notifications are in the past, so it’s expected result can only be checked in DB
This is available in the enCompass main database’s notification_instance table

Use Cases

Case Case 1 Case 2 Case 3 Case 4 Case 5
Simulated Condition The peak consumption

(consumption
presumably related to
activity) is high and the
household has a TV set

Humidity is
above 50% for
at least 2 hours

Base consumption
(consumption
presumably not
related to an activity)
is high and the
household has a
freezer

During the day
the luminance is
above 60 for at
least an hour
when nobody is
at home

Testing fixed
executable
recommendation

User id (username) 3 (test3) 4 (test4) 5 (test5) 96 (test8) 1 (test1)
Expected
Recommendation in
AA’s Just for You tab
and Notifications

title: “Not there? Then
switch it off”,
description: “Is the TV
running even though
you are doing
something different?
Turn it off!” (id:106)

title: “Let the
wind blow”,
description:
“Shock ventilate
more often.”
(id: 81)

title: “Fight the ice!”,
description: “Defrost
freezer (e.g. before
vacation) to melt ice
layer.”
(id: 6)

title: “Let's enjoy
a bit of shade”,
description: “To
keep your living
room cool”
(id: 77)

title: “Don't heat
empty spaces!”
description: “Reduce
heating temperature
in the living room to
18 C”
(id: 271)

Expected Time
of the
Recommendation

2018-08-30 9:00 2018-08-30 9:00 2018-08-30 9:00 2018-08-30 8:00 2018-08-30 at 8:00

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 46

Notification
User Motivation x x x x x

Test Result

Results of the test was exactly what we were expected. This means that we were able to run the test
without any problems and in the AA the following messages appeared, for the given test users:

Tip for test3 user Tip for test4 user

Tip for test5 user Tip for test8 user

Tip for test1 user

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 47

You can clearly see that all the required parts related to the recommendations (i.e. motivational incentive,
feedback buttons and the Semi-automated “Do it for me button in test1 user’s account appeared) in the
AA.

Test of the RE component was successfully done. The test was made and documented with PDX.

6.6 INFERENCE ENGINE

6.6.1 Inference Engine Performance Tests

Thermal comfort inference service:

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 48

Visual comfort inference service:

Occupancy inference service:

Activity inference service:

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 49

6.7 FUNERGY

6.7.1 Funergy Performance Tests

Service getLocalizedQuestion:

Service getNextQuestion:

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 50

Service getNextQuestionForTag:

Service getAvailableTags:

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 51

6.7.2 Funergy Functional Tests

Examples of Functional tests executed on Funergy Application are described step by step and the output of
each step is shown.

Test Procedure

TEST 1

Test 1 User Plays Single Player mode

Description The user starts the Funergy digital game extension to play on single mode.

Pre-Conditions The user has installed the funergy app on a mobile device.

Actions 1. The user starts the Funergy app.
2. On the home menu of the app he selects the single player mode.
3. The app presents a question corresponding to the current user’s level.
4. The user selects one of the possible answers.
5. The application provides feedback whether the answer was correct or wrong

and presents the user with the options of reading the explanation to the
question or continue playing.

6. If the user selects the explanation option, the application shows a brief
explanation about the topic of the question and show the option to continue
playing.

7. If the user selects the continue option, the application will display a new
question, and the cycle will continue.

Expected Result The user is able to play on single mode by receiving a continues flow of energy related
questions.

Actual Result The user is able to play on single mode by receiving a continues flow of energy related
questions.

Test Result Passed

Figure 13 – On the left, the Funergy app displaying a Question with 2 possible answers. On the right, the app display positive

feedback after a correct answer, options to see the explanation and to continue playing are available.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 52

TEST 2

Test 2 User Decodes a Card

Description While playing the Funergy board game, the user needs to scan a card and answer a
question to complete the game round.

Pre-Conditions The user has installed the funergy app on a mobile device.

Actions 1. The starts the Funergy app.
2. On the home menu he selects the decode a card mode.
3. The app starts the camera to scan for a QR Code.
4. The user places the QR code in front of the camera.
5. The application recognizes the QR code and presents a question

corresponding to the current user’s level.
6. The user selects one of the possible answers.
7. The application provides feedback whether the answer was correct or wrong

and presents the user with the option of reading the explanation to the
question.

8. If the user selects the explanation option, the application shows a brief
explanation about the topic of the question and show the option to go back
to the home menu.

Expected Result The user is able to play the game by decoding a card.

Actual Result The user is able to play the game by decoding a card.

Test Result Passed

Figure 14 – On the left, the home menu of the funergy app showing the Decode a card and single player options. On the right, the
decode a card option opens the camera and enable the QR code decoding.

enCOMPASS D6.6 SW Quality Assessment Report
Version 1.0 53

7 REFERENCES

● JIndent - http://www.newforms-tech.com/products/jindent/about
● YourKit - https://www.yourkit.com
● WebRatio - http://www.webratio.com/
● IFML standard - http://www.ifml.org/
● IFMLEdit - https://ifmledit.org/
● Pylint - https://www.pylint.org/
● Eclipse Foundation - https://www.eclipse.org/ide/
● JetBrains - https://www.jetbrains.com/pycharm/
● Apache web Server - https://encompass.idsia.ch/webscript/cgi-bin/disaggregation_engine
● Postman Inc. - https://www.getpostman.com/
● Apache Commons - https://commons.apache.org/proper/commons-daemon/jdepend-report.html
● Pylint - https://pylint.readthedocs.io/en/latest/technical_reference/features.html

http://www.newforms-tech.com/products/jindent/about
https://www.yourkit.com/
http://www.webratio.com/
http://www.ifml.org/
https://ifmledit.org/
https://www.pylint.org/
https://www.eclipse.org/ide/
https://www.jetbrains.com/pycharm/
https://encompass.idsia.ch/webscript/cgi-bin/disaggregation_engine
https://www.getpostman.com/
https://commons.apache.org/proper/commons-daemon/jdepend-report.html
https://pylint.readthedocs.io/en/latest/technical_reference/features.html

	Executive Summary
	1 Introduction
	2 Quality and Testing Domain
	2.1 Code quality Testing
	2.2 Individual component Testing
	2.3 Integrated Testing
	2.4 Functional Testing
	2.5 Performance and Scalability Testing
	2.6 Deployment Testing

	3 Quality Assessment Metrics
	3.1 Code size metrics
	3.2 Code Quality metrics
	3.3 Performance metrics
	3.4 Reliability metrics

	4 Deployment and Quality Assurance Tools
	4.1 Deployment Environment (IDE)
	4.2 Code Quality Checking Tools
	4.3 Version Control Tools
	4.4 Issue Tracker
	4.5 Performance Testing Tools

	5 Performed Tests
	5.1 The Service Integration and Orchestration Component
	5.2 The Awareness Application for Web and Mobile Access
	5.3 The Gamification Engine
	5.4 The Energy Efficiency Console for Utility and Buildings
	5.5 The Disaggregation Engine
	5.6 The Notification Engine
	5.7 The Recommendation Engine
	5.8 The Inference Engine
	5.9 Funergy – Digital Game Extention of the Board Game

	6 Appendix A
	6.1 Service Integration and Orchestration
	6.1.1 Service Integration and Orchestration Performance Tests
	6.1.2 Service Integration and Orchestration Functional Tests

	6.2 Gamification engine and Awareness Application (AA)
	6.2.1 Gamification Engine Performance Tests
	6.2.2 Awareness Application Functional Tests

	6.3 Disaggregation Engine
	6.3.1 Disaggregation Engine Performance Tests
	6.3.2 Disaggregation Engine Functional Tests

	6.4 Notification Engine
	6.4.1 Notification Engine Performance Tests
	6.4.2 Notification Engine Functional Tests

	6.5 Recommendation Engine
	6.5.1 Recommendation Engine Functional Tests

	6.6 Inference Engine
	6.6.1 Inference Engine Performance Tests

	6.7 Funergy
	6.7.1 Funergy Performance Tests
	1
	2
	3
	4
	5
	6
	6.1
	6.2
	6.3
	6.4
	6.5
	6.6
	6.7
	6.7.1
	6.7.2 Funergy Functional Tests

	7 References

