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Abstract. This paper examines the implementation of an algorithm for
the prediction of metabolic rate (M) and clothing insulation (Icl) values
in indoor spaces. Thermal comfort is calculated according to Fanger’s
steady state model. In Fanger’s approach, M and Icl are two parameters
that have a strong impact on the calculation of thermal comfort. The es-
timation of those parameters is usually done, utilizing tables that match
certain activities with metabolic rate values and garments with insula-
tion values that aggregate to a person’s total clothing. In this work, M
and Icl are predicted utilizing indoor temperature (T ), indoor humidity
(H) and thermal comfort feedback provided by the building occupants.
The training of the predictive model, required generating a set of train-
ing data using values in pre-defined boundaries for each variable. The
accuracy of the algorithm is showcased by experimental results. The
promising capabilities that derive from the successful implementation of
the proposed method are discussed in the conclusions.
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1 Introduction

In modern societies people spend almost 90% of their time indoors [6]. Stud-
ies have shown that indoor thermal conditions may impact on the occupants’
attendance and cognitive performance [10]. Consequently, indoor thermal con-
ditions should be regulated so that they do not have any negative effect to the
occupants’ feeling or execution of activities. The American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) defines thermal com-
fort as “the condition of the mind in which satisfaction is expressed with the
thermal environment” [1]. The definition emphasizes to the fact that it refers to
a state of mind and not a standard condition. As such, it is different for every
person and it is influenced by many factors such as age, gender, mood or culture.

Generally, comfort occurs when human temperature remains between a cer-
tain range, skin moisture stays low and human body makes a minimal effort
for regulation. Lack of comfort is noticed when changes in human behavior are
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observed [2]. Changing clothes, changing posture, altering activity or just com-
plaining are that type of behaviors. The parameters that affect thermal sensation
were defined by MacPherson in 1962 [9]: air temperature, air speed, humidity,
mean radiant temperature, metabolic rate and clothing insulation. Those six fac-
tors were later incorporated into a steady state heat transfer model developed by
Fanger, utilizing experimental results from 1296 human subjects in a controlled
climate chamber [4]. In these studies, participants were dressed in standardized
clothing and completed specific activities, being exposed to different thermal
environments. In some cases, the thermal conditions were chosen, while partici-
pants were recording their thermal sensation using the 7-point ASHRAE thermal
sensation scale ranging from cold (-3) to hot (3) with neutral conditions at (0).

Analyzing the parameters that compose Fanger’s comfort equation, it be-
comes obvious that measuring temperature, humidity and air speed can be
done effortlessly using sensors. On the other hand, clothing habits and activ-
ity are more subjective factors and may as well require more complex equipment
for their continuous registering. Thus, clothing insulation is either measured
from human subjects or mannequins [3], or an initial assumption is made using
ASHRAE tables. Metabolic rate is measured either by telling human subjects to
perform certain activities, or assumed from tables similarly with clothing [8]. The
current work attempts to personalize the thermal comfort computation process,
by predicting different clothing insulation and metabolic rate values for every
subject, depending on the thermal comfort feedback that they provide. This way,
the thermal comfort computation becomes more accurate, without the need of
ASHRAE tables, that significantly deviate from real-life indoor thermal comfort
conditions.

The remaining of the paper is structured as follows: section 2 elaborates
on Fanger’s thermal comfort model. Section 3 describes the algorithm that was
formulated for M and Icl prediction. In section 4, experimental results that
showcase the effectiveness of the algorithm are presented while conclusions are
drawn in section 5.

2 Thermal comfort calculation

As long as the users provide no feedback, their comfort is calculated from
Fanger’s equation which uses the Predicted Mean Vote (PMV) index in or-
der to quantify the degree of thermal discomfort on the 7-point ASHRAE scale.
Fanger’s equation is based on the general heat balance equation that describes
the process of heat exchange between a man and his environment [7]:

M −W = C +R+ Esk + (Cres + Eres). (1)

The external work W (W/m2) in the equation is small and is generally ig-
nored under most situations. The internal energy production M (W/m2) is de-
termined by metabolic activity. C (W/m2) is the heat loss by convection. R
(W/m2) is the heat loss by thermal radiation. Esk (W/m2) is the heat loss by
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evaporation from the skin. Cres (W/m2) and Eres (W/m2) are the sensible and
the evaporation heat losses due to respiration respectively.

The convection heat transfer C (W/m2) from the human body to the envi-
ronment is given by:

C = fcl · hc · (Tcl − Ta), (2)

where Tcl (oC) is the clothing surface temperature and Ta (oC) is the ambient
air temperature. The heat transfer coefficient hc (W/m2 ·K) depends on the air
velocity Va (m/s) across the body and consequently also upon the position of
the person and orientation to the air current while the clothing area factor fcl
depends on the clothing insulation.

The radiation heat transfer between the body and surrounding surfaces is
given from:

R = σ · εcl · fcl · Fvf ·
[
(Tcl + 273.15)

4 − (Tr + 273.15)
4
]
, (3)

where εcl is the emissivity of the clothing. Fvf is the view factor between the
body and the surrounding surface. σ is the Stefan-Boltzmann constant, which has
the numerical value of 5.67 · 10−8 W/m2K4. Tr (oC) is the radiant temperature.
The surrounding surface temperature can be taken as approximately ambient
air temperature Ta (oC). The respiration heat loss is divided into evaporative
heat loss (latent heat) and sensible heat loss. The rate of the heat transfer by
respiration is usually at the lower level beside the other rates of the heat transfer.
This rate is given by:

Cres + Eres = 0.014 ·M · (34 − Ta) + 0.0173 ·M · (5.87 − Pa), (4)

where Pa (Pa) is the partial vapour pressure.
The rate of the heat loss by evaporation is the removal of heat from the body

by evaporation of perspiration from the skin. The heat loss by evaporation is
made up of two, the insensible heat loss by skin diffusion and the heat loss by
regulatory sweating. This rate can be calculated by:

Esk = 3.05 · (5.73 − 0.007 ·M − Pa) + 0.42 · (M − 58.15)). (5)

Finally, the PMV value is determined from the following equation:

PMV = (0.303 · e−0.036·M + 0.028) · L, (6)

where L is defined as follows:

L = M −W − C −R− Esk − (Cres + Eres). (7)

The air speed is set to 0.1m/s, which is a typical value used by ASHRAE
standard [1]. According to [11], the difference between air temperature and mean
radiant temperature is negligible for indoor environments. Sensors are utilized
for the acquisition of temperature and humidity data, while metabolic rate and
clothing insulation are initialized according to ASHRAE standard [1], as shown
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in Figure 1 and Figure 2. The hypothesis for the metabolic rate and clothing
insulation values begins by separating the day at five intervals. Regarding the
metabolic rate, mild activities such as sitting, reclining, typing, reading are con-
sidered for each user during the day, while at night the user is considered to
be sleeping. The clothing insulation takes into consideration the day interval in
combination with the season of the year, in order to infer a user’s clothing. Day
and night separation is also made here, since during sleep the bed and the sheets
provide some extra insulation.

Fig. 1. Metabolic rates for typical tasks [1]

3 Metabolic rate and clothing insulation prediction from
user feedback

User feedback is utilized in order to revise the initial metabolic rate and clothing
insulation values and steadily converge to the user’s objectives. The final goal is
to create a different profile for each user, since every person may have different
dressing preferences and may perform different activities in his/her house during
the day. The feedback provided by the users refers to their thermal sensation
in terms of the PMV index. The correction of the metabolic rate and clothing
insulation values is made only for the specific interval that the feedback is given.
The new M, Icl are calculated according to the following methodology:

The first step towards building this model was the formulation of a training
dataset. According to ASHRAE standards [1], M and Icl have upper and lower
limits. Discrete values were chosen within the respective boundaries for all of
the variables that compose Fanger’s equation (T , H, Icl, M). The step that was
used for the sampling of each variable, was selected considering the variable’s
impact on the final PMV outcome at the [-3, 3] scale of PMV (Table 2).

The next step requires solving Fanger’s equation for all of the possible states
that were generated. The combination of T, H, Icl, M values generate a total
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Fig. 2. Garment insulation [1]

Table 1. ASHRAE thermal comfort scale

Value Sensation

+3 Hot

+2 Warm

+1 Slightly warm

0 Neutral

-1 Slightly Cool

-2 Cool

-3 Cold

of 770.400 different states. After solving the equation, a mapping table was
formulated that will be utilized as the training dataset for the model (Table 3).

When a user decides to give feedback about the thermal comfort conditions
in his/her house, the given value is considered to be the actual PMV value for
the specific timestamp. The task of the model is to use the given feedback along
with the sensor data and predict the clothing insulation and the metabolic rate.
The formulated problem requires the estimation of multiple continuous variables
yi=(M, Icl) from a vector of k input variables xi=(PMVfeedback, T, H). This is
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Table 2. Variables sampling for the training dataset

Variable Interval Step Impact of variable’s step change on PMV value

Temperature [18,31] 0.3 0.1

Humidity [20,75] 5 0.05

Metabolic Rate [44,164] 4 0.05-0.2

Clothing Insulation [0.04,1.84] 0.04 0.02-0.2

Table 3. Mapping table

Temperature Humidity Clothing Insulation Metabolic Rate PMV

23.4 40 0.84 52 -0.58

23.4 40 0.84 56 -0.41

23.4 40 0.84 60 -0.25

23.4 40 0.84 64 -0.17

23.4 40 0.84 68 -0.09

23.4 40 0.84 72 0.21

23.4 40 0.84 76 0.32

23.4 40 0.84 80 0.42

23.4 40 0.84 84 0.50

23.4 40 0.84 88 0.58

23.4 40 0.84 92 0.65

23.4 40 0.84 96 0.72

23.4 40 0.84 100 0.78

23.4 40 0.84 104 0.84

23.4 40 0.84 108 0.91

23.4 40 0.84 112 0.97

23.4 40 0.84 116 1.02

23.4 40 0.84 120 1.09

23.4 40 0.84 124 1.15

a multi-target regression (MTR) problem so an appropriate regressor is selected.
To this end, extremely randomized trees (extra trees), presented by Geurts et
al [5] were utilized. Extra trees is an algorithm for ensemble tree construction
based on extreme randomization. It belongs to the global methods of MTR,
which means that all of the target variables are predicted simultaneously using
one model in contrast to the local methods that predict each target variable sep-
arately. Global methods exploit the dependencies that exist between the target
variables and result in better predictive performance.

The extra trees regression algorithm builds an ensemble of unpruned re-
gression trees according to the classical top-down procedure. It has two main
differences with other ensemble tree-based methods:

– The procedure of selecting cut-points for splitting the tree nodes is performed
randomly.
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– The trees grow using the whole learning sample and not just a bootstrap
replica.

The splitting procedure for numerical attributes includes the following parame-
ters:

– K, which denotes the number of attributes selected at each node;
– nmin, which refers to the minimum sample size for splitting a node;
– L, which represents the number of trees of the ensemble.

The final prediction in regression problems is given by aggregating the pre-
dictions of all trees and then using the arithmetic average. From variance point
of view, extra trees are able to reduce variance more strongly than other random-
ization tree methods, using explicit randomization of the cut-point and attribute,
combined with ensemble averaging. Bias is also minimized by the usage of the
full original learning sample, in contrast to methods that use bootstrap replicas.
Assuming balanced trees, the complexity of tree growing is of order N · logN
with respect to learning sample size. The parameters K,nmin, L can be adjusted
manually or automatically, however it is suggested by Geurts that the default
settings are used in order to maximize the computational advantages and auton-
omy of the method. The above claim is empirically confirmed at our case, since
different settings of the algorithms were used, but finally the default settings
were selected as they provided more accurate results. The default criteria for
measuring the quality of a split is mean squared error.

The users are able to give their feedback through a mobile application. Then,
the model uses the feedback along with temperature and humidity data and
finally predicts the new values of M and Icl for the current user. Those values
refer to the time interval in which the feedback is given. Metabolic rate and
clothing insulation values are finally stored, updating previous ones. From that
point on, the user’s thermal comfort will be estimated with these new M and
Icl values.

Summarizing, the comfort inference algorithm is executed as a whole, as
described in the following steps:

1. All the necessary data are retrieved from the database. This includes: tem-
perature, humidity, metabolic rate, clothing insulation.

2. Data are pre-processed in order to handle abnormalities such as null or du-
plicate values.

3. It is checked whether the user has provided feedback. If there is feedback,
then the comfort feedback predictive model is loaded and new values for M
and Icl are calculated.

4. Thermal comfort is being calculated using Fanger’s Equation.

4 Experimental Results

The algorithm is tested for the whole possible range of feedbacks, from -3 to +3.
The feedback was set to change with a step of 0.05 at each observation, while
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Fig. 3. Thermal comfort inference flow chart

T and H were randomly chosen to be between certain intervals. A total of 120
observations were created, that were utilized as inputs to the pre-trained pre-
dictive model, which generated a pair of M , Icl predictions for each observation.
The predicted M , Icl values were then inserted into Fanger’s equation and PMV
value was calculated. Finally, the feedback was compared to the calculated PMV
value for each observation in order to test the accuracy of the M, Icl predictions.
The comparison between thermal comfort feedback values and predicted PMV
values is shown in figure 4.

The error that corresponds to the observations of figure 4, is depicted in figure
5. This error represents the deviation of the observed value (PMV deriving from
the predicted M, Icl) from the true value (actual PMV feedback).

error = predicted PMV value− feedback (8)

As seen in figure 4, the predictions are accurate for the whole range of feed-
back values. This is also confirmed from the errors that are below 0.2 for the
majority of the observations. Mean squared error (MSE) and mean absolute
error (MAE) remain very low, at 0.0108 and 0.0739 respectively. The model’s
worst prediction, results to an error of 0.28 which is translated to lower than 5%
error in the [-3, 3] scale. It is deduced that the overall performance of the model
is satisfying, as the predicted M, Icl values approximate closely to the feedback
(PMV value) from which they were derived, when inserted to Fanger’s equation.
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Fig. 4. Feedback and predicted PMV values comparison

Fig. 5. Error of each observation

Table 4. Error Analysis of the tested observations

Error Analysis

Mean Squared Error 0.0108

Mean Absolute Error 0.0739

Maximum Error -0.28

Minimum Error 0.0009

5 Conclusions

This study elaborates on the two subjective factors that are part of the thermal
comfort equation, clothing insulation and metabolic rate. The accurate predic-
tion of these parameters, utilizing feedback provided by the study subjects, could
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be crucial in the field of indoor thermal comfort inference, as it allows the cre-
ation of flexible personalized models that can be more accurate as they eliminate
the subjective factor enclosed in Fanger’s static model. Experimental results were
demonstrated that showcase the accurate prediction of M, Icl. This allows the
use of the proposed algorithm for the definition of M, Icl values, thus enhancing
the accuracy obtained by assuming initial M, Icl values from ASHRAE tables.
Future work may include experiments using subjects from different study groups
in order to create thermal comfort models depending on age, gender etc.
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