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Abstract—We propose a framework for energy-based human 

activity recognition in a household environment. We apply machine 
learning techniques to infer the state of household appliances from 
their energy consumption data and use rulebased scenarios that 
exploit these states to detect human activity. Our decision engine 
achieved a 99.1% accuracy for real-world data collected in the 
kitchens of two smart homes. 

I. INTRODUCTION 

Knowing the true activity of occupants in a building at any 

given time is fundamental for the effective management of 

various building operation functions ranging from energy 

savings to security targets, especially in complex buildings with 

different internal kind of use. As the activities of occupants 

within the building vary throughout the day, it is difficult to 

characterize the different activities in different time periods. 

In general, activity monitoring in buildings is of high interest, 

since it significantly contributes to the improvement of a 

building’s energy efficiency [1] and increases the quality of life 

of people in Ambient Assisted Living (AAL) environments 

[2]. Therefore, there is a need for detailed activity knowledge. 

Human activity can be estimated using various sources, such 

as movement sensors [3], occupancy sensors [4], cameras [5], 

audio [6] as well as appliance current consumption [7]. 

In this paper, we propose a decision engine that is able to 

identify the activities based on the energy consumption rate of 

household appliances using smart plugs to support non-

intrusive load monitoring (NILM) and machine learning. The 

human activity is recognized using only the energy 

consumption rate information from several appliances in a 

domestic environment by using only smart plugs. The decision 

engine for human activity recognition applies popular machine 

learning classifiers (supervised) on household appliances 

aiming to infer the appliance status (ON/OFF) along with a real 

time appliance activity proportion measurement for each 

appliance to determine daily household activities related to 

these appliances. To determine the most effective classifier for 

each appliance we run a series of Monte Carlo simulations 

testing different settings for each classification method. 

When it comes to human activity recognition, users’ privacy 

is an important issue. Most of the proposed methods address 

the problem of human activity recognition using intrusive 

techniques for data collection (e.g. cameras, wearables), 

energy consumption rate thresholding on workload of 

appliances, time series analysis, probabilistic techniques and 

machine learning. Our work proposes the use of unobtrusive 

and easy-install tools (smart plugs) for data collection and a 

decision engine that combines energy signal classification 

using dominant classifiers (compared in advanced with grid 

search) and a probabilistic measure for appliance usage. It 

helps preserving the privacy of the resident, since all the 

activities are stored in a local database. 

The remainder of the paper is organized as follows. In 

Section II, we review the literature. In Section III, we describe 

the energy consumption rate dataset and how we pre-process 

it. In Section IV, we formulate the decision engine for the 

activity recognition. In Section V, we describe our simulation 

setup and give our results. In Section VI, we draw our 

conclusions. 

II. RELATED WORK 

Many approaches have been proposed to address the 

problem of activity recognition in domestic environments. 

Most methods operate on the basis of multi-parametric data, 

taken from multiple modalities; i.e., various kind of sensors 

installed in the house environment. 

Kim et al. [8] compared the performance of Hidden Markov 

Models (HMMs), Conditional Random Fields (CRFs) and the 

Skip-Chain CRF, of eating activities in a home environment. 

Nazefrad et al. [9] compared the performance of HMMs and 

CRFs for activity recognition in a smart home environment, 

using real time data from motion and temperature sensors. 

Giakoumis et al. [10] proposed an activity recognition scheme 
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for daily activities such as cooking, eating, dishwashing and 

watching TV, based on depth video processing and Hidden 

Conditional Random Fields (HCRFs), achieving an overall 

accuracy of 90.5% in a natural home environment. 

More recently, Stankovic et al. [11] proposed an innovative 

methodology that characterizes the energy consumption rate 

of domestic life by making the linkages between appliance 

enduse and activities through an ontology built from 

qualitative data about the household and NILM data. Lavin and 

Klabjan [12] proposed a clustering technique for time series, 

on energy usage data provided by several U.S. power utilities, 

aiming to compare and contrast those with similar energy 

usage tendencies and to identify potentials for energy 

efficiency along with the open and close hours for business. 

Cottone et al. [13] trained an HMM as an automated activity 

recognizer using sensors network readings initially converted 

into meaningful events, by applying a lossy compression 

algorithm based on minimum description length. The aim of 

their work was to level out peaks of energy consumption rate 

by identifying the appliances whose service is effectively 

needed by users, and postponing the use of the others until 

the combined demand for energy falls below some predefined 

threshold. In the work of Xu et al. [14] an alternative scalable 

two- stage methodology for household consumption 

segmentation is proposed that considers both the shape of a 

load profile (the time and magnitude of its peaks in household 

appliances consumption) along with its overall consumption to 

determine different typical consumer behavior patterns. Rao 

et al. [15] proposed an approach combining machine learning 

(Support Vector Machines) edge analysis and time series 

models (autoregressive moving average) on the identification 

of active appliances and on the prediction of future power 

usage utilizing demographic data in addition to aggregate 

power usage over time. Deshmukh and Lohan [16] proposed a 

framework for creating the appropriate features and labels 

from the training data and used these features to predict the 

appliance status (ON/OFF) and appliance energy consumption 

rate using a variety of classifiers. Finally, Belley et al. [17] 

proposed an algorithm for human activity recognition 

extracting features from the active and reactive power of each 

device using a Gavazzi meter. This method does not consider 

the case where a smart home would be equipped with several 

devices of a specific model. Furthermore, it would require the 

purchase of materials to measure the harmonics in power 

system in some cases, such as the television. 

Contemporary activity recognition methods in smart homes 

rely mostly on sensors, which are further separated into 

wearable [18] and environment-related ones [19]. Recent 

work [20] shows that ontologies and semantic technologies 

have been used for activity modeling and representation, as 

well as knowledge-driven approaches [21]. Wearable-based 

techniques depend on user interaction with the sensor and, in 

most cases, on user motion measured with accelerometers. 

III. DATA COLLECTION AND ANALYSIS 

In order to infer the daily activities of a resident from 

electricity meters, one has to know the operating state of an 

electrical appliance. Estimating the operating state of an 

electrical appliance within a household, based on its power 

consumption, requires an extensive data collection procedure. 

 

(a) Kitchen environment setup CERTH 
KRIPIS smart home with selected devices of 

interest 

 

(b) Kitchen environment setup CERTH/ITI 
ground floor kitchen with selected devices 
of interest 

Fig. 1: Data collection environments 

As an initial step of this research, we focused on the power 

consumption of electrical appliances in a kitchen environment. 

From the first house (House A) (Fig. 1a), we collected data from 

the oven, the cooker hood, the dishwasher, the fridge and the 

main consumption (which includes the Heating, Ventilation, 

and Air Conditioning (HVAC), lights and other appliances) of 

the entire apartment. Regarding the second house (House B) 

(Fig. 1b), we collected data from one fridge, since our goal in 

that specific setup, was to check if it is possible to detect when 

a resident opens and closes the fridge door. In what follows, 

the infrastructure for data collection and the approach that 

was followed for pre-processing of the dataset are described. 

A. Data Collection Infrastructure 

Fig. 2 shows our data collection infrastructure. We installed 

a Gavazzi smart electricity meter in the oven and the main 

consumption panel of House A. The Gavazzi meter 

communicates with a Raspberry Pi via BACnet and then the 

Raspberry Pi sends the raw data to the InfluxDB database via a 

RESTful web service. We also measured the electricity 

consumption of selected devices (fridge, cooker hood, 

dishwasher and oven) via a wireless network of smart plugs 

that use the ZigBee protocol (https://www.plugwise.com). The 

installed smart plug modules communicate with each other 

forming a network of mesh topology. Furthermore, a special 

built-in module 



 

 

was used in order to monitor the power consumption of the 

electrical kitchen appliance. 

An aggregator application was developed and installed on a 

PC (MQTT Broker). It requested the current power 

consumption from each module for given time steps, received 

the corresponding messages, which include the measured 

energy consumption rate of the connected appliance in Watts, 

the time stamp (in UTC; later converted to local time), the ID 

of the device, and then stored the data directly into the 

database (InfluxDB). 

For the second house (House B), we followed a similar 

procedure using the plugwise smart plugs that collected the 

energy consumption rate data for the specific device that we 

monitored (fridge). 

 

Fig. 2: Data collection infrastructure 

B. Data Pre-Processing 

After retrieving the raw data for House A, over a period of 

one month, a pre-processing step was performed in order to 

create the final aggregated dataset, which includes events per 

one-minute intervals of all the measured features. It is worth 

mentioning that due to technical issues with the smart plugs 

or the InfluxDB database, we had to overcome the sparsity of 

the raw data matrix. In order to solve this problem, we filled 

the missing values with the mode of the values of the last 15 

minutes, until a new value was sent to the database. Regarding 

House B, we collected the electricity consumption of a fridge 

over a period of 10 days. The plugwise smart plug was sending 

data every 5 seconds, a time interval that was sufficient to 

detect whether someone opens and closes the door of the 

fridge. 

The next step was to aggregate the features, consisting of 

energy consumption rate in Watts for each of the four 

appliances of interest (oven, fridge, dishwasher, cooker hood). 

Firstly, we had to round the time (index), since there was a 

delay of a few ms between the ”subscription” and the 

”publish” of the event to the MQTT broker. Secondly, we 

manually labeled the dataset regarding the target feature or 

the state of operation (ON/OFF). The fridge was considered to 

be always ON, even when the compressor was not operating. 

The rest of the devices were labeled as OFF (0) when the 

reading of the sensor was between 0 and 2.1348 W (a value 

around 2 W was considered as a 0 for all the appliances from 

the manufacturer) and ON (1) when the reading of the sensor 

was greater than 3 W. Hence, the dimensions of the overall 

dataset is 1440(minutes)×4(number of appliances) (for each 

day, without taking into account the target feature). 

Fig. 3 shows indicative instances of the power consumption 

for the four appliances from House A. We noticed that we 

could detect a difference in power consumption regarding the 

LED state of the cooker hood (measured 4 W). In addition, 

after measuring the power consumption of the oven (Gavazzi 

meter sent data every 15 minutes), we could check if there are 

any ”matching” times between the two devices, in order to 

infer the activity of cooking. Furthermore, the operation of the 

dishwasher was periodic and therefore quite trivial to infer the 

activity of washing the dishes. The most challenging appliance 

was the fridge, since our goal was to detect the appliance 

usage, in terms of door opening and closing events (based on 

the fridge light consumption). The fridge located in House A 

was a state of the art machine, in terms of energy efficiency 

and consequently it was not possible to detect when the 

resident opened and closed the door, even when we increased 

the data collection time to 20 s. 

On the other hand, the fridge that we monitored located in 

House B was an older model than the one in House A. After 

sampling at 5 s, we noticed that we could detect when a 

resident opens and closes the door of the fridge (light turned 

on) only when the compressor was not operating (Fig. 4), since 

the consumption increased from 2 W to 6 W. Otherwise, it was 

not possible to detect any activity, since there was no 

difference in the power consumption. 

C. Appliance State Proportion Feature 

A key feature to the proposed activity decision engine is the 

appliance state proportion, which defines the probability of an 

appliance to be at ON stage on a pre-decided overlapping 

sliding window [22]. Assume again a set of M activities. In our 

approach, for each activity i ∈ {1,2,...M}, and each decision 

time t, a feature  is calculated for each sensor j, as the 

proportion of time, or probability, that sensor j is activated at 

time t, that is: 

  (1) 

where 0≤ TON(i,j) ≤ T is the total amount of time that sensor 

j is activated at time t, the latter having a total duration of T. 

In our work, T was equal to 2 minutes, as it was found to be 

sufficient for activity detection. 
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IV. DECISION ENGINE FOR HUMAN ACTIVITY RECOGNITION 

Fig. 5 depicts our proposed methodology for an energy 

sensor-based (smart plugs) decision engine for human activity 

recognition. Assume a set of N sensors (smart plugs) that 

provides the input data (energy consumption rate of N 

household appliances) for the N classifiers, where each 

classifier 

 

Fig. 4: Fridge power consumption from House B 

is dedicated to a specified appliance and M ≥ N activities (an 

activity may relate with more than one appliance). The input 

data for each classifier is the energy consumption rate 

measurements of the whole set of appliances while the 

supervisory signal (used during training) is a vector of the 

specified appliance states (0 and 1, where 0 denotes the OFF 

state and 1 denotes the ON state of an appliance). The decision 

engine calculates the probability of presence of a specific 

activity using Rule-Based Scenarios (RBS) that get as inputs the 

appliance operating state from the classifier and the appliance 

state proportion, at the decision time t. An appliance was 

considered to be active if the state proportion feature was 

above a threshold of 0.5. In total we collected 21,600 

measurements over the 30 days (720 2-minute measurements 

per day). 

We measured the energy consumption of the cooker, 

cooker hood, oven, washing machine, and dish washer to 

monitor the three following activities: cooking, washing the 

dishes, and washing clothes. Therefore for our particular 

example N was 4 (oven, cooker hood, dishwasher and washing 

machine) and M was 4 (cooking, washing clothes, washing 

dishes and doing nothing; when no activity of the 

aforementioned was performed). Furthermore, we applied a 

probability boost of 0.3 for the activity of cooking when the 

cooker hood is ON and a 0.7 for the activity of cooking when 

the oven is ON, since the state of cooker hood is not related 

directly with cooking. 

A key-feature of the proposed decision engine is the use of 

an efficient and effective classification technique. To identify a 

suitable classification technique, we tested the following 

machine learning methods: Support Vector Machines (SVMs) 

with their basic kernels (Linear, Polynomial and Radial Basis 

Function (RBF)) [23], Decision Trees (DT) [24], Naive Bayes (NB) 

[25], Logistic Regression (LR) [26], Artificial 

Neural Networks (ANNs) and specifically a Back-Propagation 

Network (BPN) [27]. Along with these standalone machine 

learning algorithms, the ensemble learning methods of 

Random Forest (RF) [28] and Gradient Boosting (GB) [29] were 

also tested for their predictive performance. We considered 

the aforementioned classifiers, since a simple thresholding 

would not be robust against noisy signals and we would lose 

significant information from the 2 minute-windows. 

For the two-class classification scenario of a single 

household appliance (appliance status OFF/ON), in order to 

assess our models, the measures of precision, recall, accuracy 

and Matthews Correlation Coefficient (MCC) were used, which 

are computed from the contents of the confusion matrix of the 

 

Fig. 3: Power consumption plots of the selected appliances 
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Fig. 5: Overview of energy sensor-based decision engine human activity detection 

TABLE I: Accuracy of proposed decision engine 

Activities 
Number of correct 

predictions 
Ground-truth in 2-minute 

intervals for 30 days 
Accuracy 

(%) 
Cooking 632 685 92.3 

Washing Clothes 240 250 96.1 
Washing the Dishes 920 965 95.4 

Doing Nothing 19,621 19,700 99.6 
Average - - 99.1 

classification predictions. Precision is the ratio of predicted 

true positive cases to the sum of true positives and false 

positives, recall is the proportion of the true positive cases to 

the sum of true positives and false negatives and accuracy is 

the proportion of the total number of predictions that were 

correct. 

Precision or recall alone cannot describe a classifier’s 

efficiency, especially in cases where the labels in training 

target feature are not balanced. Therefore, MCC is used as 

balanced evaluation measure and specifically a correlation 

coefficient among the actual classification and predicted 

output of the classifier. It returns a value between -1 and +1, 

where +1 represents a perfect prediction, 0 random prediction 

and -1 indicates total disagreement between prediction and 

observation. MCC is calculated directly from the confusion 

matrix and is given by the equation: 

 

where TP (True Positives), FP (False Positives), TN (True 

Negatives) and FN (False Negatives). 

V. RESULTS 

We generated 100 Monte Carlo iterations for different 

parameter scenarios in each classifier to eliminate the bias. For 

every iteration, we used a random sampling crossvalidation 

where the percentage of samples in the training and the 

testing datasets was 70% and 30%, respectively. For the SVM 

with polynomial kernel, the parameter, θ, which is a free 

parameter taking integer values, is assigned as: 

θ=(start=30,end=60,step=6) and the polynomial degree takes 

the values p=(start=2,end=7,step=1). We found that after the 

4th degree, we overfitted the dataset. For the SVM with linear 

kernel, we used the default configuration of scikit-learn [30]. 

For the SVM with radial basis function kernel, σ varied same as 

θ and the constant C as C=(start=100,end=1000,step=100). 

The parameter σ of the RBF kernel handles the non-linear 

classification. For the DT we used the default optimized 

version of the Classification and Regression Trees (CART) 

algorithm. For NB we used the Gaussian algorithm for 

classification and for LR we used the default configuration of 

scikit-learn. The BPN had a single hidden layer and the number 

of neurons varies as n=(start=100,end=200,step=20). The RF 

and GB have an ensemble of 

estimators=(start=20,end=100,step=20) DTs. The combination 

of all values of parameters and the size of 100 Monte Carlo 

iterations for each case, results in an overall of 11000 tested 

cases grid search. 

Since more than one classifier achieved the best 

performance, we selected the SVM with polynomial kernel 

classifier and performed activity inference for random times. 

Table I summarizes the accuracies for the monitored activities 

(cooking, washing clothes, washing dishes) over 30 days. When 

an appliance was switched on, our decision engine was not 

able to instantly detect that it was operating and relate it to an 

activity. However, after 4 minutes of operation of that 

particular device it was able to predict the activity related to 

the operating appliance correctly and achieved an average 

accuracy of 99.1%. Furthermore, since the fridge required a 
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high sampling rate in order to determine when the door is 

open or closed, it is not a device that can be directly related to 

an activity, such as cooking. However, it can be used as a 

”supplementary” appliance to increase the confidence of the 

predicted activity. 

VI. CONCLUSION 

We presented a framework for human activity context 

inference, based on energy consumption rate from selected 

appliances. The results are very promising towards 

unobtrusive activity detection for ambient assisted living. 

While our experiments were done in a kitchen environment, 

our approach is flexible enough to be applied to other smart 

home environments. Since most activities within a house are 

related with the use of an electrical appliance, this unimodal 

approach has a significant advantage using inexpensive smart 

plugs and smart meters for each appliance. 

Nevertheless, the main limitation of our approach is that it 

will not work with activities that are not related to electrical 

appliances, such as sleeping and taking a shower. Therefore 

there is a strong need for combining the smart meter sensors 

with acoustic, CO2, occupancy sensors to increase the activity 

recognition performance. As future work, we plan to increase 

our dataset, increase the time for appliance monitoring, add 

more devices from other smart home environments and test 

the algorithm in new ”untrained” home environments. 
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