
enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 1

D6.1 DELIVERY MANAGEMENT PLAN AND TESTING
SPECIFICATION
Description of the software development process

Project title Collaborative Recommendations and Adaptive Control for

Personalised Energy Saving

Project acronym enCOMPASS

Project call EE-07-2016-2017 Behavioural change toward energy

efficiency through ICT

Work Package

WP6

Lead Partner SMOB

Contributing Partner(s) PMI, EIPCM, SHF, NABU, WVT, SES, CERTH, NHRF, SMOB,

KTU, GRA, PDX

Security classification Public

Contractual delivery date 30/04/2017

Actual delivery date 28/04/2017

Version 1.0

Reviewers PMI (C. Pasini, P. Fraternali), CERTH (S. Krinidis)

Ref. Ares(2017)2212714 - 28/04/2017

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 2

History of changes

Version Date Comments Main Authors

0.1 15/03/2017

DDP (Deliverable Development Plan) – definition

of the document structure and the contributions

expected from each partner

L.Caldararu

0.2 20/04/2017 Review and update on Architecture components C.Pasini

0.3 24/04/2017 Review and update of the platform components L.Caldararu

0.4 26/04/2017 Review and update of the release plan L.Caldararu

0.5 26/04/2017 Review and update of requirements M.Melenhorst

0.6 26/04/2017 Quality check C.Pasini, P Fraternali

0.7 27/04/2017 Final review P.Fraternali

0.8 27/04/2017 Final review S.Krinidis

1.0 27/04/2017 Final version L.Caldararu

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 3

Disclaimer

This document contains confidential information in the form of the enCOMPASS project findings, work and

products and its use is strictly regulated by the enCOMPASS Consortium Agreement and by Contract no.

723059.

Neither the enCOMPASS Consortium nor any of its officers, employees or agents shall be responsible or

liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

The contents of this document are the sole responsibility of the enCOMPASS consortium and can in no way

be taken to reflect the views of the European Union.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 723059.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 4

TABLE OF CONTENTS

Table of Contents .. 4

1 Introduction ... 7

1.1 Overview of the enCOMPASS architecture .. 8

1.2 enCOMPASS functional objectives ... 9

1.2.1 Analysis and design methodology .. 9

1.3 Layers of the enCOMPASS architecture ... 9

1.3.1 Data acquisition layer ... 9

1.3.2 Data/Object layer ... 9

1.3.3 Business Process layer .. 10

1.3.4 Consumer layer ... 10

1.4 enCOMPASS Components .. 10

2 Specifying requirements in the enCOMPASS project .. 12

2.1 User-centered design methodology ... 12

2.2 Requirements specification model ... 12

3 Development process and methodologies .. 14

3.1 Model driven development process ... 14

3.2 Agile development process .. 17

3.3 Reference architectural patterns ... 19

3.3.1 Design Patterns ... 19

3.3.2 Three-tier architecture ... 20

3.3.3 Application frameworks.. 21

3.4 Coding conventions and guidelines .. 22

3.4.1 Naming Conventions... 23

3.4.2 Guidelines Writing Source Code ... 23

3.4.3 Exception Handling ... 23

3.4.4 Logging Guidelines .. 24

3.4.5 Third Party Components Integration Guidelines .. 24

3.5 Continuous Integration... 24

3.5.1 Continuous integration flow description .. 26

4 What makes an enCOMPASS release .. 27

4.1.1 Group Identifier (groupId) .. 27

4.1.2 Artefact Identifier (artefactId) .. 27

4.1.3 Version (version code) .. 27

4.1.4 Packaging (packaging) ... 27

5 Release Plan ... 28

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 5

5.1 Release notes ... 28

5.2 Content of the platform releases ... 29

6 Testing strategy ... 31

6.1 Unit testing ... 31

6.2 Integration testing .. 31

6.3 End to End functional testing ... 32

6.4 Testing tools ... 32

6.4.1 GUI testing .. 32

6.4.2 Web service testing .. 32

6.4.3 Component testing ... 32

6.4.4 Performance testing ... 33

7 Conclusions and future work ... 34

8 References ... 35

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 6

Executive Summary

This document is the Deliverable D6.1: Delivery management plan and testing specification, which,

according to the Description of Work has the following goals:

D6.1 provides description of the software development process; code management tools; documentation

to set up the development and testing environments.

This deliverable represents an outcome of task T6.1 Delivery Management Plan. Based on requirements

that are being defined in T2.1 (User-centered requirements specification and design of behavioural

interventions), it sets up a centralized and automatic build process verified by automatic unit tests. It

enables an effective collaboration environment for developers and testers, who continuously are updated

about the status of the whole development of enCOMPASS.

The main objective of this deliverable, is laying the ground for an effective collaboration environment for

developers, who continuously are updated about the status of the whole development of enCOMPASS. The

aim of delivery management is to lower deployment and integration risk by supporting error prone tasks

(such as manual deployment) and install project automation tools.

It describes the technical standards and procedures, adopted in the enCOMPASS software development

process; it also presents the plan for delivering enCOMPASS platform releases, as conceived at the current

stage of the project (month 6).

 Chapter 1 resumes the objectives of the enCOMPASS project in terms of behavioural models that will

be implemented in the software platform. Also, this chapter provides an early overview of the

enCOMPASS platform components. The development strategy for enCOMPASS platform is evolutionary

prototyping which means that it will go through several iterations following incremental refinements of

the functional specification (Task 2.3) and architecture design (Task 6.2).

 Chapter 2 presents an overview of the planned requirements analysis methodology.

 Chapter 3 provides a description of the development process, methodology and tools.

 Chapter 4 describes the composition of enCOMPASS platform releases.

 Chapter 5 schedules the timetable for the planned functionality within each release.

 Chapter 6 provides the testing strategy, introducing the procedures that will be followed in the testing

enCOMPASS components and artefacts.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 7

1 INTRODUCTION

The enCOMPASS project develops an ICT platform for improving the management of energy demand

thanks to the integrated use of smart meters, sensors, social computation based on advanced models of

consumer behaviour.

The solution proposed by the enCOMPASS project will be able to:

 Understand and model the consumers’ current behaviour on the basis of historical and real-time

energy usage data;

 Stimulate behavioural change for energy saving with a holistic approach integrating innovative

digital tools with smart home automation and a full-cycle model of sustained behavioural change;

 Make energy usage data accessible to consumers in a user-friendly, easy-to-understand way;

 Demonstrate that individual comfort levels can be maintained while achieving energy savings;

 Validate the relative effectiveness of different types of behavioural change interventions for

different types of users, in different types of settings and in different climatic conditions;

 Make the enCOMPASS platform, digital tools, services and acquired energy data available to

designated third-parties (in privacy-preserving ways) initiating the creation of a business

ecosystem for the development and provision of value-added services for smart energy demand

management;

From the technical viewpoint, building the enCOMPASS system is a challenge due to several factors

stemming from the hybrid nature of the solution to be constructed; indeed enCOMPASS is:

 A socio-technical system, which must deliver an engaging user experience to attract and retain

energy users.

 A data-intensive system, because it will acquire, integrate and process a vast amount of

heterogeneous data.

 A quasi-real time system, because it will ingest metering at a high speed and volume.

 A decision support system, in its capacity to serve the data analytics and modeling needs of the

utility managers.

 A distributed system, because it will be deployable also component-wise and in a Software as a

Service model, which demands for a highly distributable and flexible architecture.

To tackle the development of a system of this nature, it is imperative to establish a principled development

process, based on solid engineering standards.

The choice of enCOMPASS is to adopt an agile version of Model Driven Engineering [Ambler04], which

conjugated the platform-independent nature of MDE with the lean development approach of agile

processes.

The motivation of this approach is manifold:

 Expertise of the Consortium: the consortium partners are well acquainted with both MDE and agile

methods.

 Benefits in the project lifetime: MDE delivers better documentation of the software (the models)

and is amenable to a higher degree of automation (e.g., code generation) and is less prone to

technology changes.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 8

 Benefits after the project conclusion: models embody the technical knowledge in a more durable

form than source code and thus facilitate post project exploitation, when novel scenarios may

demand the adaptation of the enCOMPASS components to different technological platforms.

1.1 OVERVIEW OF THE ENCOMPASS ARCHITECTURE
As presented in the Project Description of Action (DoA) (see Figure 1), the original concept of the

enCOMPASS architecture indicates the components and the processes that will be implemented in order to

achieve individual and collective behavioural response to specific energy conservation policies.

Figure 1: Overview of the enCOMPASS overall concept (DoA – enCOMPASS)

Seen as a system, enCOMPASS platform can be seen as a negative feedback control system.

A negative feedback control is specific to a system in which the output of the main process related to a

proposed objective is fed back into the input with the purpose to reduce the effect of increasing the input.

This kind of feedback control generally induces stability over a proposed objective.

In the real world of the enCOMPASS project, the purpose is a sustainable energy conservation policy, while

the negative control feedback consists of inducing a shared understanding and motivation by the energy

users, thus leading to a reduction in energy consumption, while not compromising the quality of life.

The main goal of the project is to ensure an efficient energy demand using social awareness, social gaming

incentives and financial instruments. Following this social objective, enCOMPASS Platform architecture is

designed with respect to the main data flows:

 Input flow: user behavioural data (usage metering, social game and social media profile).

 Control flow: social game incentives and price signals. This flow is supposed to trigger changes

in user behaviour according to Energy Supplier objectives.

Besides the main data flows, the Platform must also accommodate utility subscriber profile data coming
from Energy Supplier portals and reporting and analysis tools for Energy Supplier companies.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 9

1.2 ENCOMPASS FUNCTIONAL OBJECTIVES

The enCOMPASS Platform relies on collecting data from energy utilities, end-consumers gaming actions
and social media, processing data using data analysis instruments such as gamification, then measuring
and exposing user behaviour changes.

In designing the software platform, specific independent components can be identified, as well as their
role of providing functionality as services to other components. Such components are independent of
vendor, product or technology. This is the leading principle towards the decision of implementing a
Service-Oriented Architecture for achieving enCOMPASS objectives.

1.2.1 Analysis and design methodology

The analysis and design methodology used for enCOMPASS Platform is Service Oriented. The theoretical
basis and practical modelling tools reside mainly on:

 Service Oriented modelling and architecture (SOMA) from IBM.
 Service Oriented Architecture Modelling Language (SOAML) from OMG.
 Unified Modelling Language (UML) from OMG.
 Industry best practices and patterns for architecture and design.

1.3 LAYERS OF THE ENCOMPASS ARCHITECTURE
Technical implementation of enCOMPASS Platform is based on a layered architecture. Each layer is

designed with respect to separation of concerns principles. The proposed architecture is organized in four

distinct layers:

 Data acquisition layer.
 Data/object layer.
 Business process layer.
 Consumer layer.

1.3.1 Data acquisition layer

This layer is responsible with bulk data acquisition and bulk data delivery. Inputs of this layer are:

 Energy usage data files from Utilities. Parallel processing of raw data files will be performed by

open source Big data analysis platforms.

 Social media user data.

 Other REST based data sources, user portals of Energy Utilities.

This layer plays the role of a mediation component that handles raw data acquisition, transformation and

storage in a format that can be used at upper layers.

1.3.2 Data/Object layer

This layer is responsible for data storage in SQL (and NoSQL formats where needed for efficient processing).

This layer will expose services for upper level for basic access to data. It will store data such as:

 Energy usage data.

 Building general information and sensor data.

 User profile data.

 Game actions and rewards data.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 10

 Exogenous data (e.g., meteo time series).

1.3.3 Business Process layer

This layer is responsible for implementation of business logic. This layer will expose business services for

Consumer layer. Business level components are:

 Gamification engine. This component will provide game scenarios and will handle user interactions

with the platform through social game clients. This is a platform built-in component, as it satisfies a

critical enCOMPASS project objective.

 Recommendation engine: This component will provide personalized adaptive energy saving

recommendations, based on the user’s profile and context.

1.3.4 Consumer layer

This layer consists of client applications for services exposed by the Business Process Layer. Consumer of

platform business services that are foreseen at this stage:

 Energy consumer applications (households, public building dwellers, schools).

 GWAP (Games with a Purpose) client application.

 Energy utility administrative application.

 Platform administration and configuration application.

As the platform implementation advances it will always possible to connect to the enCOMPASS services any

client applications that implements the platform API specification.

1.4 ENCOMPASS COMPONENTS
At the moment of the writing of this deliverable, due in Month 6, various activities such as analysis

meetings, conference calls, on-to-one discussions between partners are being undertaken in order to

define the enCOMPASS platform architecture. The definitive enCOMPASS platform architecture will be

provided in deliverable D6.2 Platform architecture and design, due in Month 12.

The components foreseen at this stage for building the enCOMPASS platform are the following ones:

 The Smart meter and sensor data management component [SMOB] deals with the acquisition of

data streams from smart meter and their consolidation within the enCOMPASS database.

 Behavioural change apps [PMI]: web and mobile applications developed to visualize energy usage,

deliver recommendations and engage the user with serious game mechanics and gamification

techniques.

 The Portal data exchange component [SMOB] deals with the communication between the

enCOMPASS platform and a third party application already supporting the interaction with the

various types of users. Such application may comprise a customers’ portal of the utility company, or

a B2E application for managers and operators.

 The Social data exchange component [PMI] deals with the communication between the

enCOMPASS platform and social network communities where the utility company has a presence or

consumers are already enrolled. Such communication may serve the purpose of advertising energy

awareness initiatives, disseminate the social games, or publishing customers’ achievements.

 The Gamification engine component [PMI] embodies rules for transforming users’ actions into

gamification scores and achievements.

 The Gamification Engine Admin Portal [PMI] allows one to configure gamification objects like

actions, badges and rewards and includes tools to monitor customer gamification activities.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 11

 The Energy Game Digital Extension [PMI-KAL] consists of mobile apps (typically, mobile digital

games) targeted at energy consumers for letting them have a playful experience while increase

their individual and social awareness about sustainable energy consumption behaviour. Such

component provides activities logs for the gamification engine to compute the user’s gamification

achievements and scores.

 Data analysis and user modelling [CERTH]: algorithms for extracting activity from sensor and app

data, profiling different types of user behaviour, inferring activity context, predicting reactions to

stimuli (e.g., saving tips).

 Data analysis and building modelling [CERTH]: algorithms for estimating the comfort levels and

energy behaviour of buildings based on a reduced set of measured input parameters dependent on

the class of the buildings. They allow projecting the impact of consumers’ actions on energy

consumption and on the status of the building, to complete the user context. The base model

includes: building characteristics (i.e., space allocation and size, neighbouring spaces, building size,

location of the energy consumption of subsystems, etc.), user profile, local climate data, energy

consumption of subsystems (i.e., HVAC, plug loads etc.).

 Adaptive in-context recommendation engine [GRA]: used in order to map user’s models and

behavioural data into personalized recommendations for energy saving. Users will be classified in

categories and activity patterns will be extracted from consumption, sensors’ and psychographic

data (in a privacy respecting way), in order to compute saving tips that fit the current context of the

specific user.

The full technical details of the enCOMPASS platform and application design will be provided in the

deliverable: D6.2 Platform Architecture and Design, which is due at month 12.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 12

2 SPECIFYING REQUIREMENTS IN THE ENCOMPASS PROJECT

enCOMPASS will develop a socio-technical system, which highly depends on the human factors in the

interaction with the technology. Therefore a suitable emphasis is placed in the methodology for collecting

requirements, which must be user-centred and give appropriate attention to the usability and social

acceptability factors in application design.

To emphasize this aspect of development, we anticipate in this section the view of the planned

requirements analysis methodology and the resulting requirements specification format that will be

employed in the enCOMPASS project. The fine-grained requirements approach and early use cases will be

defined in D2.1 Use cases and early requirements.

2.1 USER-CENTERED DESIGN METHODOLOGY
The requirements analysis methodology follows the iterative human-centred design process defined in ISO

13497 [ISO99]. To understand user needs following this process, first the target group and context of use

are defined, followed by the specifications of user requirements, the development of design solutions and

the evaluation of these solutions with users and stakeholders (see Figure 2). The results feed into the next

iteration cycle, in which the activities are repeated until the solution is considered mature enough. During

these multiple iterations, feedback is obtained both from end-users (user pull) and technical partners

(technology push), which aims to construct requirements that are both technically feasible and grounded in

user-needs.

Figure 2: Human-centered design process according to [ISO 13407]

2.2 REQUIREMENTS SPECIFICATION MODEL
Based on the requirements analysis activities, the requirements for the enCOMPASS applications will be

specified in the following way. High-level user stories (scenarios of use, [Carrol95]) will be defined to

describe what a set of users do and experience as they perform a set of specific tasks in a specific context.

The user stories will be described by a short structured narrative. Based on the users stories, use cases will

be defined. Additionally, visual user interface mock-up will be created, illustrating the given functionalities

from the user perspective. The mock-ups will be used to elicit user feedback and to align technical

feasibility.

iterate,

iterate

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 13

For each use case, a list of functional and non-functional requirements will be defined. These will be

formalized using one of the well-known use case templates (e.g. [Cockburn01]). This basic requirements

specification model is visualized in Figure 3. The details will be defined in D2.1 Use cases and early

requirements.

The requirements following the described specification model will be delivered within the deliverables D2.1

Use cases and early requirements, D2.2 Final requirements and D2.3 Functional specification.

Figure 3: User-centered requirements specification model in enCOMPASS

The results of the application of the employed requirements analysis and specification methodology are

collected in the deliverables:

 D2.1 Use cases and early requirements, which is due at month 8.

 D2.2 Final requirements, which is due at month 12.

User Stories

Use Cases

Use Case 1 Use Case Description

Functional Requirements

Non-functional
Requirements

Use Case 2

Use Case n

Mock-ups

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 14

3 DEVELOPMENT PROCESS AND METHODOLOGIES

In order to reach the project objectives, a proper technical management of the enCOMPASS platform

implementation must be conducted. For selecting the right development methodology critical aspects as

the following ones have to be considered:

 The usage of open standards for developing and distributing the enCOMPASS platform.

 The identification of highly reusable independent components in the designed software system.

 The strength of the relationship between the software components and between the enCOMPASS

system and the external integrated applications.

As a result of an extensive analysis based but not limited to the above aspects, the methodologies selected
for developing and integrating the software components of the enCOMPASS Platform is Model-Driven,
Agile and Service Oriented.

The theoretical basis and practical modelling tools and patterns of this Architecture document reside
mainly but not limited to:

 Object oriented system modelling with the Unified Modelling Language (UML) from OMG [OMG-UML].

 Interactive system modelling with the Interaction Flow Modelling Language [OMG-IFML].

 Data Modelling with the Entity-Relationship Model [Chen76].

 Service-oriented modelling and architecture (SOMA) with IBM [IBM-SOA] and the Service Oriented

Architecture Modelling Language (SOAML) from OMG [OMG-SOAML]

3.1 MODEL DRIVEN DEVELOPMENT PROCESS
enCOMPASS will develop a platform consisting of a backend for data acquisition, storage, processing and

the behavioural modelling of users, coupled to a set of graphical user interfaces, ranging from gaming

interfaces to business portals to data analytics dashboards, offered to a variety of stakeholder.

The capabilities that enCOMPASS must deliver to the users span such aspects as information browsing and

analytics, hypertext-style navigation, form-based interaction, and interface personalization, both in

consumer applications and in business information systems. Such functionalities must be implemented on

top of a variety of devices, technological platforms, and communication channels.

To address this complexity, enCOMPASS will exploit software development approaches based on a

Platform Independent Model (PIM), which can be used to express the software design decisions

independently of the implementation platform, according to the so-called Model Driven Engineering

paradigm (MDE) [BCW12].

Specifically, enCOMPASS development will follow the MDE incarnation proposed by the Object

Management Group Model Driven Architecture (MDA) and, more in general, which is a well-known

international body of standards for the MDE development approach.

Furthermore, the development of complex and heterogeneous applications such as the enCOMPASS back-

end platform and GUIs will be addressed with agile approaches, which traverse several cycles of “problem

discovery” / “design refinement” / “implementation”. An iteration of the development process generates a

prototype or a partial version of the system. Such an incremental lifecycle is particularly appropriate for

modern Web and mobile applications, which must be deployed quickly and change frequently during their

lifetime to adapt to the user’s requirements. Figure 4 schematizes the development process adopted in

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 15

enCOMPASS platform and positions the various modelling notations and standards exploited in the project

within the flow of activities.

Requirements specification collects and formalizes the information about the application domain and

expected functions. The input is the set of business/user requirements that motivate the application

development, and all the available information on the technical, organizational, and managerial context.

The output is a functional specifications document comprising:

 The identification of the user roles and of the use cases associated with each role.

 A data dictionary of the essential domain concepts and of their semantic relationships.

 The workflow embodied in each use case, which shows how the main actors (the user, the

application, and possibly external services) interact during the execution of the use case.

In addition, non-functional requirements must also be specified, which include performance, scalability,

availability, security, and maintainability. When the application is directed to the general public, e.g., the

energy users, requirements about the “look & feel” and usability of the interfaces assume special

prominence among the non-functional requirements. User-centred design practices can be applied, which

rely on the construction of realistic mock-ups of the application functionality, which can be used for the

early validation of the interface concepts and then expanded into more detailed and technical

specifications during the front-end modelling phase. The user-centred methodology explained in Section 3

will drive the activities in the Requirements specification task.

Figure 4: Role of IFML in the development process of an interactive application

 Domain modelling 1 organizes the main information objects identified during requirements

specification into a comprehensive and coherent Domain Model. Domain modelling is a well-

established discipline: the first conceptual data modelling language, the Entity-Relationship model,

was proposed in 1976, and ever since new modelling languages have been proposed, including

UML. Correspondingly, modelling practices and guidelines have been consolidated; in particular,

domain modelling for interactive applications exploits suitable design patterns, discussed in chapter

3. The entities and associations of the Domain Model identified during domain modelling are

referenced in the front-end design models, to describe what pieces of data are published in the

interface.

1 “Domain Modelling” is the locution normally employed in object-oriented methodologies, whereas conceptual database design

normally refers to “Data Modelling”.

Requirements
Specification Domain Modelling

Architecture Design

Implementation

Maintainance
and Evolution

Front-end Modelling

Testing and Evaluation

Application

Business logic Modelling

IFML model
Domain
model

Requirements
specifications

Business logic
model

Deployment

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 16

 Front-end modelling maps the information delivery and data manipulation functionality dictated

by the requirements use cases into a front-end model. Front-end modelling operates at the

conceptual level, and is where Interaction Flow Modelling Language (IFML) [OMG-IFML] comes into

play. The designer may use IFML to specify the organization of the front-end in one or more top-

level view containers, the internal structure of each view container in terms of sub-containers, the

view components that form the content of each view container, the events exposed by the view

containers and components, and how such events trigger business actions and update the

interface.

 Business logic modelling specifies the business objects and the methods necessary to support the

identified use cases. UML static and dynamic diagrams are normally employed to highlight the

interfaces of objects and the flow of messages. Process-oriented notations, such as UML activity

and sequence diagrams, BPMN process models, and BPEL service orchestrations provide a

convenient way to represent the workflow across objects and services. The actions specified in the

business logic design can be referenced in the front-end model, to show which operations can be

triggered by interacting with the interface.

 Data, front-end, and business logic design are interdependent activities executed iteratively; the

precedence order of Figure 4 is only illustrative: in some usage scenarios, work could start from the

design of the front end and the data objects and actions could be discovered a posteriori by

analysing what information is published in the interface and what operations are requested to

support the interactions.

 Architecture design is the definition of the hardware, network and software components that

make up the architecture on which the application delivers its services to users. The goal of

architecture design is to find the mix of these components that best meets the application

requirements in terms of performance, security, availability and scalability, and at the same time

respects the technical and economic constraints of the project. The inputs of architecture design

are the non-functional requirements and the constraints identified during business requirements

collection and formalized in the requirements specifications. The output may be any specification

that addresses the topology of the architecture in terms of processors, processes and connections,

such as UML deployment diagrams.

 Implementation is the activity of producing the software modules that transform the data,

business logic, and interface design into an application running on the selected architecture. Data

implementation maps the Domain Model onto one or more data sources, by associating the

conceptual-level constructs to the logical data structures (e.g., entities and relationships to

relational tables). Business logic implementation creates the software components needed to

support the identified use cases; the implementation of individual components may benefit from

the adoption of software frameworks, which organize the way in which fine-grain components are

orchestrated and assembled into larger / more reusable functional units and also cater for non-

functional requirements, like performance, scalability, security, and availability. Business logic may

also reside in external services, in which case implementation must address the orchestration of

calls to remote components such as Web APIs. Interface implementation translates the

conceptual-level Containers and Components into the proper constructs in the selected

implementation platform. View Containers may interoperate with business objects, deployed

either in the client layer or in the server layer.

 Testing and evaluation verify the conformance of the implemented application to the functional

and non-functional requirements. The most relevant concerns for interactive applications testing

are:

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 17

 Functional testing: the application behaviour is verified with respect to the functional

requirements. Functional testing can be broken down into the classical activities of module

testing, integration testing and system testing.

 Usability testing: the non-functional requirements of ease of use, communication

effectiveness, and adherence to consolidated usability standards are verified against the

produced front-end.

 Performance testing: the throughput and response time of the application must be

evaluated in average and peak workload conditions. In case of inadequate level of service,

the deployment architecture, including the external services, must be monitored and

analyzed for identifying and removing bottlenecks.

 Deployment is the activity of installing the developed modules on top of the selected architecture.

Deployment involves the data layer and the software gateways to the external services, and the

business and presentation layer, where the interface modules and the business objects must be

installed.

 Maintenance and evolution encompass all the modifications applied after the application has been

deployed in the production environment. Differently from the other phases of development,

maintenance and evolution are applied to an existing system, which includes both the running

application and its related documentation.

Model Driven Engineering has important implications not only during the production of software but also

for other development activities.

 Implementation may exploit model transformations and code generation to produce prototypes of

the user interface or even the fully functional code.

 Testing and evaluation can be anticipated and performed on the software models, rather than on

the final code. Model checking may discover inconsistencies in the design of the front-end (e.g.,

unreachable statuses of the interface) and suggest ways for refactoring the user interface for better

usability (e.g., recommend uniform design patterns for the different types of user interactions, such

as searching, browsing, creating, modifying, and deleting objects).

 Finally, maintenance and evolution benefit most from the existence of a conceptual model of the

application. Requests for changes are analyzed and turned into changes at the design-level. Then,

changes at the conceptual level are propagated to the implementation, possibly with the help of

model-to-code transformation rules. This approach smoothly incorporates change management

into the mainstream production lifecycle, and greatly reduces the risk of breaking the software

engineering process due to the application of changes solely at the implementation level.

3.2 AGILE DEVELOPMENT PROCESS
Model-Driven Development can be used in conjunction with agile methodologies, to attain a development

process called agile model-driven [Ambler04].

enCOMPASS will adopt an agile approach towards model-driven development and software integration

for delivering the platform. Based on the preliminary technical scenarios identified at this stage of the

project, the applications and the services that will constitute the software platform will be developed as an

iterative process with permanent feedback from the user communities and energy utilities. Adopting an

agile approach will ensure a proper way to react quickly and to respond accurately to the changes that are

inevitable during the development process.

Scrum is a lightweight project management process [Scrum Methodology, cPrime] that can manage and

control software and product development. Instead of promoting the traditional analysis, design, code,

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 18

test, deploy "waterfall" approach. Scrum proposes iterative and incremental practices. Similarly, instead of

being "artefact-driven", whereby large requirements documents, analysis specifications, design documents

are created, Scrum requires fewer artefacts in order to start working. Concerning the software

development, Scrum concentrates on writing software that produces business value.

Scrum allows working on small pieces at a time, in an iterative approach. Each iteration consists of some

requirements gathering, some analysis, some design, some development and some testing culminating in

an iterative release cycle with many deployments.

Scrum Roles

Scrum uses three “roles": Product Owner, Scrum Master and Project Team.

 The Product Owner is possibly a Product Manager or Project Sponsor, a member of Marketing or an

Internal Customer.

 The Scrum Master is key person "represents management to the project". Such a role usually filled

by a Project Manager or Team Leader. They are responsible for enacting Scrum values and

practices. Their main job is to remove impediments, i.e. project issues that might slow down or

stop activity that moves the project forward.

 The Project Team usually consists of between 3 to 10 members. The team itself is cross-functional,
involving individuals from a multitude of disciplines: QA, Programmers, Testers, UI Designers.

The Process

"Out of the box" Scrum is described by Figure 5. Most projects have a list of requirements (type of system,
planning items, type of application, development environment, user considerations, etc.) Scrum records
requirements in a Product Backlog. Requirements need not be precise nor do they need to be described
fully. As with most projects, the requirements are sourced from the expected users or "the business". The
Product Owner prioritizes the Product Backlog: items of importance to the project/business, i.e. those
items that add immediate and significant business value, are bubbled up to the top.

Figure 5: Scrum process

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 19

The Project Team responsible for doing the actual work then creates a Sprint Backlog: this comprises of
Product Backlog items that they believe can be completed within a 30 day period. The Project Team may
liaise with the Product Owner and others in order to expand item(s) on the Sprint Backlog. After 30 days
have elapsed, the team should have a "potentially shippable product increment”.

The Product Owner, the Scrum Master and the Project Team will make an initial pass over the Product
Backlog items where they work out roughly how long each item will take. Initially, these are estimates,
best guesses. As time progresses, they will find out if the estimate was even close.

Scrum allows refining the initial estimates on-the-fly: if a task will take longer than envisaged, it offers the
ability to say so before the tasks starts. By only ever working with small work packages (time-boxed to 30
days), any schedule/requirement issues are dealt with as soon as they are identified, not much further
downstream where the cost of recovery is considerably higher.

3.3 REFERENCE ARCHITECTURAL PATTERNS
The overview of the enCOMPASS platform emphasize a system architecture composed by decoupled

components and packages of components that are orchestrated to work together in order to produce the

expected outcome. The key principle used in designing and developing enCOMPASS platform is the

“separation of concerns” – that is separating the platform into distinct sections, such that each section

addresses a separate concern (software element). The value of separation of concerns is simplifying

development and maintenance of computer programs. When concerns are well-separated, individual

sections can be reused, as well as developed and updated independently.

Further, close to the development side, the design principles are implemented through design patterns.

These are critical for underlining a correct approach in designing and writing maintainable and reusable

code. A design pattern is a reusable solution that can be applied to commonly occurring problems in

software design. Selecting the right design pattern that will be used for implementing the software project

is a strategic choice for the success of the enCOMPASS project in terms of: development, adaptability to

requests for change, usability from both user side and utility side and overall achievements.

3.3.1 Design Patterns

Model-View-Controller (MVC) is a design pattern that enforces the separation between the input,

processing, and output of an application. To this end, an application is divided into three core components:

the model, the view, and the controller. Each of these components handles a discreet set of tasks.

The view manages the graphical and/or textual output to the portion of the bitmapped display that is

allocated to its application. The controller interprets the input events (input from mouse and keyboard)

from the user, commanding the model and/or the view to change as appropriate. Finally, the model

manages the behaviour and data of the application domain, responds to requests for information about its

state (usually from the view), and responds to instructions to change state (usually from the controller).

Figure 6 shows a graphical representation of the MVC paradigm.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 20

Figure 6: Model-View-Controller paradigm

3.3.2 Three-tier architecture

From a conceptual point of view, the MVC paradigm reflects the separation of the tiers within the

enCOMPASS platform multi-tier architecture.

By segregating the applications into tiers, developers acquire the option of modifying or adding a specific

layer, instead of reworking the entire application. The Three-tier architecture is typically composed of a

presentation tier (implementing the user interface), a domain logic tier (implementing the business rules),

and a data storage tier (implementing data access) that are developed and maintained as independent

modules. The three-tier architecture is intended to allow any of the tiers to be upgraded or even replaced

independently, in response to changes in requirements or technology. For example, changing the operating

system in the presentation tier would only affect the user interface code. Also, using a different DBMS than

the platform original (e.g. PostgreSql instead of MySql), will only affect the data storage tier.

Figure 7 shows a sample graphical representation of the three-tier architecture concept implemented
within a use-case of the enCOMPASS platform. The objective of the application use-case is to display a
chart representing the energy consumption of a family for the current month.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 21

Figure 7: Example of Three-tier architecture representation of a enCOMPASS use-case

3.3.3 Application frameworks

The key objectives of the enCOMPASS platform - that are education in energy usage and openness in

accepting changing of behaviour – are permanently reflected in the choices for implementation of the

platform, including the approaches towards developing the software side. The enCOMPASS platform is

entirely based on Open Source software with Java as central technological choice while the code of the

specific components that will be developed for fulfilling platform specific objectives will be made public for

each project release, also.

The standard structure of the applications will base on software frameworks.

By this approach, the applications are in full compliance with the business rules, that is structured and that

is both maintainable and upgradable. Also, the development process become faster, because it allows

developers to save time by re-using generic modules in order to focus on creative areas.

As an example, a software framework will keep the developer from having to spend days in order to create

an authentication form - which is a repetitive task in man projects. The time that is saved can be dedicated

to more specific components as well as to the corresponding unit tests, thus providing solid, sustainable

and high quality code.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 22

As a result of understanding the preliminary requirements for development, the process of software

development foresees the usage of some of the most efficient open source programming frameworks and

best practices in Java.

Hibernate [HIB] and Spring [SPRING] are open-source Java frameworks that simplify developing and

integrating Java/JEE applications. Hibernate framework will be used for solving the requirements of

managing and persisting data to the platform database. Spring framework provides a multitude of services

spread over the application architecture, such as inversion of control, aspect-oriented programming,

modularizing common behaviours, decoupling the application components as well as integrating

components.

Figure 8: Conceptual integration of Hibernate and Spring in a Java application

3.4 CODING CONVENTIONS AND GUIDELINES
Software production from enCOMPASS partners is expected to follow not only common design and

architectural patterns, but also common rules in naming convention, quality certification, development

systems, libraries, documentation and forms of Software delivery: all these issues are taken in

consideration in the following, in order to set up proper foundations for the Software building. Where

available at the time this document is issued, examples of guidelines and system configurations are

provided as samples.

According to this goal, this section provides specific procedures for developers who have to deliver

enCOMPASS components. These procedures are intended to ensure that delivered components are

installable and work properly. Ideally, by using these procedures, components need only to be retrieved

from binary repository, installed, configured and tested to run, optimising the overall production cycle lead

time.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 23

These paragraphs are intended to give some common conventions for enCOMPASS software development.

In the case of enCOMPASS, for all kinds of artefacts produced, (components, pipelets and pipelines) the

development conventions should be adopted.

3.4.1 Naming Conventions

The definition of a common and agreed-upon naming convention for developed bundles and created

packages is basic in a project with various partners.

 The names chosen should easy, giving an idea about the feature improved and the kind of bundle

produced.

 The name of the project should always be present in all features and bundles.

 In the name of packages could appear also the coded name of the partner.

e.g.:

Feature Name: enCOMPASSproject.process.smob.wikilyrics

Base package name: eu.enCOMPASS.process.smob.wilkilyrics

3.4.2 Guidelines Writing Source Code

The source code should adopt the standard common java and JavaBean standard rules:

a. The package names should have only small letters;

b. All the class names should start with a capital letter;

c. All the class attributes and member names and also local variable names should start with a small

letter;

d. When a class, an attribute, a member or a variable name is composed of more than a word, the

letter of each word should be capital apart from first one;

e. The public static constant should be in capital letters and if more words, tied by an underscore;

f. All the class attributes should be private;

g. All the attributes must be used with their own getters and setters;

h. Getter and setter methods should be public;

i. Getter methods don’t have parameters and must return value type of same set methods;

j. Getter methods that don’t return boolean values must start with “get”;

k. Getter methods that return boolean values should start either with “is” or “get”;

l. Adding list methods should start with “add”;

m. Removing list methods should start with “remove”.

3.4.3 Exception Handling

Proper exception handling management is really important in framework-based software like in

enCOMPASS.

It is important that the checked exceptions are well thrown and well managed without changing their

meaning. If a kind of exception is thrown, the calling code should not manage that, should not change the

message but at least should create a new exception based on the original one.

Unchecked exception must be well prevented using right checks on parameters, variables and attributes.

Each parameter should be checked in its integrity to prevent null pointer exception, format exception and

arithmetical exceptions.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 24

3.4.4 Logging Guidelines

In a highly distributed system like enCOMPASS it is really important to create a useful and well-designed

logging system. There are some easy rules to follow.

Avoid a static reference to an apache commons log instance:

e.g.: It is good doing

 private final Log _log = LogFactory.getLog(MyClass.class);

Always check log level before logging:

e.g.: It is good doing

 if (_log.isErrorEnabled()) {

 _log.error("Your error message", e);

}

Don’t log an exception before throwing it or issuing a new one:

e.g.: It is bad doing

...

if(paramXY == null) {

 if (_log.isErrorEnabled()) {

 _log.error("paramXY is not set");

 }

 throw new NullPointerException("paramXY is not set");

}

3.4.5 Third Party Components Integration Guidelines

The installation of third party libraries (libraries, components and other software artefacts not developed

within enCOMPASS project – for example some graphical interfaces may use third party libraries and be

preliminary to the installation of enCOMPASS components. These dependencies should be clearly reported

in the installation and configuration file.

Libraries should be delivered jointly with related components where possible. If this is not possible because

of technical or legal (licenses) or other reasons, the installation and configuration file should report

download locations, versions and describe installation and configuration details with reference to the

proper URLs. All this information is collected in the installation and configuration file.

3.5 CONTINUOUS INTEGRATION
Performing a high quality software development process that delivers trustful results is a key factor in

reaching the project objectives. This must-have condition has to be fulfilled while meeting real-life

constraints such as developing collaboration projects in a loosely coupling environment. This is a kind of

condition that it is unavoidable when organizations of different types, shapes and sizes are working

together at collaboration projects as well as when the project itself aims to integrate other external

projects.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 25

These are reasons why an advanced and intelligently adapted practice is needed during enCOMPASS

platform development time. Continuous integration (CI) is the practice of merging all developer working

copies with a shared mainline as often as possible. Each check-in is then verified (tested, compiled, installed

and audited) by an automated build, allowing teams to detect problems as early as possible. Because CI

requires integrating so frequently, there is significantly less back-tracking to discover where things went

wrong, so that the developers can spend more time for building features than for debugging errors.

CI is backed by several important principles that ensures a high quality software development process for
the enCOMPASS platform. Such principles are:

 Maintaining a single source repository.

 Automating the build.

 Making the builds self-testing.

 Keeping the build fast.

 Testing in a clone of the production environment.

 Making it easy for anyone to get the latest executable.

 Making it possible for everyone to see what’s happening.

 Automating the deployment.

The development team prepared the development environment by installing and configuring the tools for

Continuous integration (CI) [ThoughtWorks].

The CI environment uses Jenkins [Jenkins] as continuous integration open-source server that receives by

automated token the new code that was committed to the Bitbucket [Bitbucket] (Git based) software

repository that will accommodate all open source repositories. Jenkins then tests, packages and submits

the code to Sonar [Sonar] automatic code reviewer. After successfully passing the code audit the element is

saved or released in Nexus [Nexus] – the repository manager for artefacts. The outcome of each iteration is

reported by e-mail.

Figure 9: Continuous integration process

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 26

3.5.1 Continuous integration flow description

Bitbucket is a web-based hosting service for projects that use Git revision control and source code

management system. Bitbucket is used to host the code and also as an issue tracker.

The code submitted to Bitbucket by the software developers is then automatically sent to Jenkins for

proper testing. Jenkins is an open-source continuous integration server. It is designed to test and report on

isolated changes in a larger code base in real-time. Jenkins is a single point of entry for building, testing,

packaging and static analysis for the modules of the enCOMPASS platform.

In the software development configuration of the enCOMPASS platform, Jenkins builds a project using

Maven [Maven]. Maven is a project building, management and comprehension tool based on the POM

(Project Object Model). After building the project and testing using Maven the project is then sent to Sonar

for a proper code analysis, review and audit. Sonar is a code quality platform it covers – coding rules,

potential bugs, complexity, and duplication. Sonar issues a report that is sent to the parties interested

according to the configuration.

After the code has been tested by Sonar, Jenkins then sends the code to the Nexus artefact repository

manager for saving or releasing. Selenium [Selenium] is a suite of tools for automating web browsers

across many platforms for testing purposes. It will be used as a build step in Jenkins in order to test the

enCOMPASS platform and components.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 27

4 WHAT MAKES AN ENCOMPASS RELEASE

Each enCOMPASS platform release is structured in artefacts. A release artefact is a tangible by-product

produced during the software development process. The release artefact is a static object, which will not

change in the project repository. Released artefacts are considered to be stable in order to guarantee that

builds, which depend upon them, are solid and repeatable over time.

Each component of the enCOMPASS platform has a specific structure, depending on the expected

outcome. Generically, each component consists of:

1. External Interfaces (Web Applications).

2. Business services.

3. Protocols.

4. Integration services.

According to this structure, each enCOMPASS release will be composed by group of artefacts corresponding

to the advancement achieved at the specific time, provided in packaged way. Moreover the artefacts will

be delivered together with the release notes document.

For example, a web application will be released as a WAR file artefact. The WAR file will be associated with

a PGP signature, an MD5 and SHA checksum that can be used to verify both the authenticity and integrity

of the binary software artefact. The code repository will include a set of descriptive attributes: groupId,

artefactId, version, and packaging.

4.1.1 Group Identifier (groupId)

A group identifier groups a set of artefacts into a logical group. Groups are often designed to reflect the
organization under which a particular software component is being produced. For example, software
components being produced by the company SETMOB member of the enCOMPASS project Consortium are
available under the groupId org.enCOMPASS.smob.

4.1.2 Artefact Identifier (artefactId)

An artefact will have an identifier for a software component. An artefact can represent an application or a
library; for example, when creating a simple web application the project might have the artefactId “simple-
webapp”, while when creating a simple library, the artefact might be “simple-library”. The combination of
groupId and artefactId must be unique for a project.

4.1.3 Version (version code)

The version of a project follows the established convention of Major, Minor, and Point release versions.
For example, a simple-library artefact has a Major release version of 1, a minor release version of 2, and
point release version of 3, the version would be 1.2.3. During the development, versions can also have
alphanumeric qualifiers that are often used to denote release status. An example of such a qualifier would
be a version like “1.2.3-BETA” where BETA signals a stage of testing meaningful to consumers of a software
component.

4.1.4 Packaging (packaging)

Packages describe any binary software format including but not limited to JAR, WAR, ZIP, SWC, EAR, SAR.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 28

5 RELEASE PLAN

In respect of the initial work plan schedule identified in the DoA, the release scheduling details the

functionalities expected in each platform prototype. The enCOMPASS project timeline comprises three

main development phases. The end of each phase corresponded to a enCOMPASS release, which collects

the progresses – in terms of artefacts- achieved at that time. Table 1 recollects the initial planning of

release content, from the DoA.

Delivery

Date

Release

version

Objective

M18 1.0 The first prototype spans over the first 18 months of the project. It will

provide the implementation of the first use cases defined for the pilots,

based on user and system requirements, system architecture and data

models specifications (M1- M12). The core integration will take place,

leading to the 1st prototype (Release R1, delivered at M18), which exploits

available components adapted to the requirements of enCOMPASS. R1 will

incorporate features shown in Table3. Evaluation will start via lab testing,

and in parallel limited scale user engagement will start with focus groups,

on the basis of early partial prototypes (M9-M18).

M24 2.0 The second prototype will be based on the feedback obtained after first

deployment and will deliver a new release including complete functionality

for most enCOMPASS components and interfaces, which will be evaluated

at both usability and performance levels (yielding Release R2, due at M24).

R2 will improve R1 with the features shown in Table 4. Both lab testing and

user engagement will be increased exponentially

M36 3.0 This prototype is based on the results of second release and starts with

activities for large scale demonstrators (at M25) leading to component and

platform consolidation into the final version (R3, due at M36). R3 will

provide the features shown in Table 5. Community feedback and user

engagement will be at a superior scale and user behaviour evaluation and

impact creation will be reported (M25-M36). Pilot activities will be

exponentially intensified, to verify effectiveness of applications and fine-

tune all results to ensure that enCOMPASS can generalize to other

sustainability challenges and is ready for post-project application.

Table 1: enCOMPASS project initial planning

5.1 RELEASE NOTES
During the phases of the development process, each platform release will be accompanied by its release

plan. The objective of a release plan is to check and validate the state of the project during the whole

development life-cycle. Therefore, each enCOMPASS release is issued with a presentation document – the

Release notes - with the goal to check and validate the implementation status of the release itself, and to

update and add further details for the next development phase.

The Release notes document is scheduled to be released in conjunction with the correspondent software

release delivery. In particular, Release notes have the following objectives:

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 29

 Reporting and evaluate the situation of the Development Process;

 Determining possible deviations from the initial Release Plan;

 Planning to implement necessary corrective actions;

 Refine and improve the Release Plan by refining its milestones.

The enCOMPASS release notes will conform to the template described in Table 2 below.

Release note identifier (name, date, version #)

What's New

System Requirements (third-party platforms / modules /

etc with version numbers / dates)

Features and changes (new features, defects corrected,

caveats etc)

Outstanding issues (unresolved defects, workarounds,

installation issues etc)

Installation guide (how to obtain and install)

Known Issues

Troubleshooting

FAQ

Other Resources and Links

Table 2: template of the enCOMPASS release notes

5.2 CONTENT OF THE PLATFORM RELEASES
The following tables present the development phases, the release plan and the functionality included in the

platform releases. The allocation of functionality is stable for release 1.0 and can be subject to variations

for the later releases, due to the full specification of requirements and the feedback that will be collected

after the trials and user evaluation of release 1.0.

Delivery

Date

Release version Features to be delivered

M18 1.0 Baseline definitions: energy consumption baseline data based on

historical values (data sets described in D3.1 DATASETS WITH

CONTEXT DATA AND ENERGY CONSUMPTION DATA).

Smart meter and sensor data acquisition: processing and saving into

the platform database of smart meter and sensor readings; connection

with smart meter and sensor data.

Initial building sensor data acquisition: database of sensor readings.

Initial engagement methods and apps (initial configuration of the

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 30

Table 3: Release content of version 1.0 of the enCOMPASS platform

Delivery

Date

Release Version Features to be delivered

M24 2.0 Heterogeneous data fusion: smart meter, building, automation,

gaming, social network integration.

User modelling, classification and personalized recommendations.

Modelling and initial impact assessment.

Advanced behavioural change apps.

Table 4: Release content of version 2.0 of the enCOMPASS platform

Delivery

Date

Release Version Features to be delivered

M36 3.0 Large scale pilot testing.

Engagement and behaviour change evaluation.

Impact evaluation.

Table 5: Release content of version 3.0 of the enCOMPASS platform

gamification engine, with basic stimuli actions and achievement).

Initial behavioural change apps:

initial mobile/web interfaces for login, logout, initial persuasive
consumption visualization, inspection of recommendations, inspection
of gamification data (leaderboard, points).

Initial behavior modeler and personalized recommendation, based on

the available user level input data.

Initial persuasive games: proof of concepts of a board game for

promoting energy awareness; proof of concept of a digital extension of

the board game.

Initial version of the gamification administrator web interface with

basic view of the user’s gamification activity in the consumers’

web/mobile app.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 31

6 TESTING STRATEGY

The Testing Strategy presents the testing procedures that will be performed in order to release the

enCOMPASS platform. Testing is performed over the artefacts – components or services – that constitutes

the enCOMPASS releases and platform as a whole. Each release is essentially composed by enCOMPASS

applications – including automatic and human tasks, various components and enCOMPASS platform core

services. The releases will be tested according to a double approach: by the component developer and by

the platform integrator.

A typical scenario involves components providers that develop component which are further aggregated

and orchestrated with the main platform. In this case, the Provider develops an artefact that are used by a

Consumer (platform integrator) for the implementation of a specific module.

Once the components are tested these are delivered to the Integrator Partner (SETMOB) for packaging, in

this sense the Integrator partner is the Consumer of the component. Also, the Integrator partner has the

role of developer of the core services of the enCOMPASS platform.

Therefore, testing procedure has been organised in three main phases:

 Artefact tests: having the objective to find possible defects of each artefact of the enCOMPASS

platform. This is the procedure applied in Unit test described in the following section.

 Integration tests: having the objective to tests the “coexistence” (the proper installation and

operation) of the components developed by the enCOMPASS partners. The integration tests are in

charge to the Integrator partner.

 End to End functional tests: having the objective to test an entire workflow, by testing a process

from the very beginning all the way to the end.

All the testing phases are supported by the Bitbucket infrastructure and in particular by the section by the

section Bugs, releases and feedbacks tracking system.

6.1 UNIT TESTING
Unit testing tests an artefact - component or service - before its official release, by means of functional

tests performed to check the correctness of the component behaviour, following its functional

specifications. Unit testing is not standardized within the enCOMPASS project, is applied to single

components, interface and application.

Unit testing tests a component before its official release, by means of functional tests performed to check

the correct component behaviour, following its functional specifications. Unit testing is not standardized

within the enCOMPASS project, and is carried on under the responsibility of the component owner.

6.2 INTEGRATION TESTING
Integration testing tests the integration of a specific kind of artefact - component or service. Installation is

checked in agreement with the installation requirements defined in the corresponding Release Note.

Integration test is performed as a final test before enCOMPASS platform packaging. Integration testing is

under the responsibility of the partner in charge of the Integration.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 32

6.3 END TO END FUNCTIONAL TESTING
End to End Functional testing verifies the functionality of the integrated component and services deployed

on enCOMPASS Platform. It has a dependency on the results of artefacts test. enCOMPASS modules,

decomposed in use cases, are exploited using the User Interface as test sessions. Functional testing is

performed mainly by the Integrator partner, supported by all the other partners involved.

Any testing session calls one of the entry points of the prototype and checks desired response.

Component or service testing can be in charge of component and service owner and/or Platform

integrator. Initial test is performed by component or service owner for smooth testing. The completed

functional testing is performed by platform integrators supported by component or service owner for all

the components and services involved.

The relationship between use cases and test sessions could not be one-to-one, because a complex use case

could be made by several distinct ways to interact with the enCOMPASS Platform, and each one must be

subject to a specific testing session.

6.4 TESTING TOOLS
Specific software tools will be used for automating the testing process of the enCOMPASS platform and its

components. The purpose is to control the execution of all the necessary tests and to confront the actual

outcomes with predicted outcomes. Automating tools can automate significant parts of the repetitive tasks

foreseen by the testing process or add additional testing that would be difficult to perform manually.

6.4.1 GUI testing

User interface (UI) testing is the process used to test if the application graphic interface is functioning
correctly. UI testing can be performed manually by a human tester, or it can be performed automatically
with the use of a software program as Selenium.

Selenium allows scaling for a large number of tests, or for tests that must run in multiple environments. It
also allows to run different tests simultaneously on different remote machines.

6.4.2 Web service testing

In the architecture of the enCOMPASS platform, the main role of the web services is achieving the

component integration. When the number of the web services becomes significant, a key issue is ensuring

their functional quality while avoiding to introduce opportunities for error or failure. Such automated tools

for web service testing are:

 SoapUI [SoapUI] represents a functional testing solution for web services. SoapUI allows creating

and running automated functional, regression, compliance, and load tests. In a single test

environment, it provides complete test coverage and supports all the standard protocols and

technologies.

 JMeter [JMeter] is an automated tool to test performance both on static and dynamic resources. It

w be used to simulate a heavy load on a server, group of servers, network or object to test its

strength or to analyze overall performance under different load types.

6.4.3 Component testing

JUnit [Junit] is an open source unit testing framework for the Java programming language. This framework

will be integrated in the development of the business logic within the platform components. It allows the

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 33

developer to incrementally build test suites to measure progress and detect unintended side effects. Tests

can be run continuously. Results are provided immediately.

6.4.4 Performance testing

Webserver Stress Tool [PAESSLER] is a HTTP-client/server test application designed to detect critical
performance issues at the web sites level thus ensuring optimal experience for the users. By simulating the
HTTP requests generated by a lot of simultaneous users, this tool will test the consumer and utility portal
performance under normal and excessive loads.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 34

7 CONCLUSIONS AND FUTURE WORK

This deliverable has presented the current status of the work regarding the ground for an effective

collaboration environment for developing, testing and releasing the enCOMPASS software platform, which

is the output primarily of WP6 platform Implementation and Integration. It has requested coordination and

integration of input from all the active work packages.

The ongoing actions consider:

 Finalizing and delivering the detailed architecture design of the enCOMPASS platform describing all

platform modules (e.g., components, services, and applications), communication protocols, and

underlying information and data models.

 Implementing the Continuous Integration software development environment as a must-have

condition for collaboration projects in a loosely coupling environment. Continuous integration tools

allow testing, compiling, installing and auditing by an automated build, allowing teams to detect

problems as early as possible.

 Finalizing and fine-tuning for the enCOMPASS data base schema and instance.

 Initiating the development for the Smart Meter data acquisition component. This component will

ensure the population of the database with test data from the demo use cases at TWUL and SES.

 Initiating the development of the Web GUI for allowing end-users to login and register their data

not provided by sensors. (e.g., data for identifying houses, users, billing prices etc.)

 Initiating the development of the Web services for integrating gamification mechanism into other

applications, produced either by enCOMPASS or by third parties.

 Initiating the development of the Web-Service interface for importing data conforming to the

enCOMPASS gamification model (e.g., user action logs in business applications, users’

achievements in mobile digital games, etc.).

Future work will address the development and testing of the components included in the first prototype

(R1) of the enCOMPASS platform. The modules of the first prototype will be continuously compiled,

installed, configured, and deployed. In the same time, feedback on the platform’s usability, coming from

the validation case studies will be considered to permanently improve the prototype’s capabilities.

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 35

8 REFERENCES

 [Ambler04] Scott W. Ambler, The object primer: Agile model-driven development with UML 2.0,

2004, Cambridge University Press

 [Bitbucket] Free source code hosting for Git and Mercurial. [Available online at

https://bitbucket.org]

 [Bugzilla]. The Web-based general-purpose bug tracker and testing tool. [Available online at

http://www.bugzilla.org]

 [BCW12] Marco Brambilla, Jordi Cabot, Manuel Wimmer, Model-Driven Software Engineering in

Practice (Synthesis Lectures on Software Engineering) Paperback – September 26, 2012

 [BF14b] Marco Brambilla, Piero Fraternali: Large-scale Model-Driven Engineering of web user

interaction: The WebML and WebRatio experience. Sci. Comput. Program. 89: 71-87 (2014)

 [CBB03] Piero Fraternali, Marco Brambilla, Aldo Bongio, Sara Comai Stefano Ceri Designing Data-

Intensive Web Applications (Dec 1, 2003)

 [Carrol95] Carroll, J.M. (1995). Introduction: The Scenario Perspective on System Development. In

J.M. Carroll (ed.) Scenario-Based Design: Envisioning Work and Technology in System Development.

New York: John Wiley & Sons.

 [Cockburn01] Cockburn, A. (2001). Writing effective use cases. Addison Wesley, 2001. ISBN 0-201-

70225-8.

 [cPrime] cPrime Inc.. Introduction to SCRUM for Project Managers. [Available online at

http://www.slideshare.net/montemontoya/agile-scrum-essentials-for-project-management]

 [Chen76] Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM

Transactions on Database Systems (TODS) , Volume 1, pages 9-36

 [FB2014] Marco Brambilla, Piero Fraternali, Interaction Flow Modelling Language: Model-Driven UI

Engineering of Web and Mobile Apps with IFML (The MK/OMG Press) Paperback – December 14,

2014 ISBN-13: 978-0128001080 ISBN-10: 0128001089

 [HIB] Hibernate ORM. Idiomatic persistence for Java and relational databases. [Available online at

http://hibernate.org/orm/]

 [IBM-SOA] [Available online at http://www.ibm.com/developerworks/library/ws-soa-design1]

 [IBM-SOMA] Available online at

https://www.ibm.com/developerworks/community/blogs/AliArsanjani/entry/soma_a_method_for

_developing?lang=en

 [ISO99] ISO 13407. Human-centred design processes for interactive systems. ISO, 1999.

 [Jenkins]. The leading open-source continuous integration server. [Available online at

http://jenkins-ci.org]

 [JMeter] Apache JMeter. A 100% pure Java application for testing functional behaviour. [Available

online at http://jmeter.apache.org]

 [JUnit] About Junit. [Available online at http://junit.org]

 [Maven]. The software project management and comprehension tool. [Available online at

http://maven.apache.org]

 [Nexus]. Repository manager for artefacts. [Available online at http://www.sonatype.org/nexus]

 [SCRUM METHODOLOGY] Scrum Methodology [Available online at http://scrummethodology.com)]

 [OMG-SOAML] [Available online at http://www.omg.org/spec/SoaML]

 [OMG-UML] [Available online at http://www.omg.org/spec/UML/]

 [OMG-IFML] [Available online at http://www.omg.org/spec/IFML/]

https://bitbucket.org/
http://www.slideshare.net/montemontoya/agile-scrum-essentials-for-project-management
http://hibernate.org/orm/
http://www.ibm.com/developerworks/library/ws-soa-design1
http://jenkins-ci.org/
http://jmeter.apache.org/
http://junit.org/
http://maven.apache.org/
http://www.sonatype.org/nexus
http://www.omg.org/spec/SoaML
http://www.omg.org/spec/UML/
http://www.omg.org/spec/IFML/

enCOMPASS D6.1 Delivery management plan and testing specification
Version 1.0 36

 [PAESSLER] Web Server Stress Tool. Performance, Load and Stress-Test for Web Servers.[Available

online at http://www.paessler.com/webstress]

 [Siegel05] Siegel, J. (2005). Introduction to OMG UML. OMG. [Available online at

http://www.omg.org/gettingstarted/what_is_uml.htm]

 [Spring] Spring Framework. Core support for dependency injection, transaction management, web

applications, data access, messaging, testing and more. [Available online at

http://projects.spring.io/spring-framework/]

 [Selenium]. Web brower automation. [Available online at http://www.seleniumhq.org]

 [SoapUI] The Swiss-Army knife for testing. [Available online at http://www.soapui.org]

 [Sonar]. Continuous code quality management. [Available online at http://sonarsource.com]

 [ThoughtWorks] Continuous Integration [Available online at

http://www.thoughtworks.com/continuous-integration]

http://www.paessler.com/webstress
http://www.omg.org/gettingstarted/what_is_uml.htm
http://projects.spring.io/spring-framework/
http://www.seleniumhq.org/
http://www.soapui.org/
http://sonarsource.com/
http://www.thoughtworks.com/continuous-integration

