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Executive Summary 
 

Deliverable D3.4 “Final User Tracking Algorithms” is a deliverable of type “demonstrator”, specified in 
the “amended” GA description as follows: 

“Final prototype, with documentation, of the algorithms for tracking the presence and movement of 
users in different indoor conditions, updated after the validation in the pilots”. 

The present report documents the software component that constitutes the actual deliverable. 

The code of the software deliverable is available in the following software repository: 

ssh://certh-encompass@18.184.32.200:22/var/git/encompass-occupancy-inference.git 

Access is granted upon request. 

 

The major goal of this document is to explain the final version of the algorithms for tracking the 
presence of users in indoor environments developed in enCOMPASS. 

Identifying building occupancy is an essential task for building analysis, though in most cases it is 
defined using predefined functions without use of any kind of measuring and training. Frequently in 
fact tools [Liao15, Mahdavi09, Yang03] analyse the building occupancy based on stochastic models (e.g. 
Markov chains or probabilistic distributions), but they are not accurate since the exploited occupant 
building usage takes into account predefined models that in most cases do not match to the actual 
operation of the building. The most accurate building occupancy acquisition can be automatically 
performed by utilizing surveillance sensors. Furthermore, building occupancy can be estimated utilizing 
indirect information, such energy consumption. Analysing this information, one can infer the occupancy 
in building with high accuracy. 

Deliverable D3.4 provides a description of the final version of algorithms used for the occupancy 
inference in indoor environments; it illustrates: 

 The environmental features and energy consumption variables used for training machine 
learning techniques (classifiers) for occupancy inference. 

 The algorithms based on energy consumption of devices/ appliances utilizing machine learning 
techniques (classifiers): 

o Random Forest. 
 The Graphical User Interface (GUI) developed for the visualization of results. 

The main dependencies with other deliverables are as follows: 

 Deliverable D3.1 “Datasets with Context Data and Energy Consumption Data”: This deliverable 

contains the specification of the energy consumption historical data sets, collected by the 

utility companies, as well as the building owners of the enCOMPASS pilots. 

 Deliverable D3.2 “First User Tracking Algorithms”: This deliverable contains a description of the 
initial version of the algorithm for occupancy inference in households based on energy 
consumption of individual devices and appliances, along with a description of machine learning 
techniques used for training. 

The deliverable is structured as follows: 

 Section 1 is the introduction of the deliverable; 
 Section 2 provides a brief description of the classification algorithms utilized in this deliverable; 

and the evaluation measures of classification; 
 Section 3 describes the proposed algorithms for occupancy inference and the dataset pre-

processing steps; 



 
 

enCOMPASS - D3.4Final User Tracking Algorithms - Version 1.0 9 
 

 Section 4 presents various experiments results that have been performed for the validation of 
the algorithms and for the selection of core classifier; 

 Section 5 provides a description of the graphical user interface; 
 The final two sections contain the Conclusions and References. 

With respect to the version of the occupancy inference algorithms preliminarily described in D3.2, this 
final version adds the following improvements: 

 Development of an intelligent interpolation algorithm for filling missing values, based on 
forward and backward passes. 

 Thorough testing of the proposed algorithms on the available data, in order to detect the 
dominant classifier. 

 Finalization of the proposed occupancy inference algorithm (both training and testing 
algorithms). 

 Evaluation of the proposed approach. 



 
 

enCOMPASS - D3.4Final User Tracking Algorithms - Version 1.0 10 
 

1 Introduction 
 
Knowing the true occupancy, the presence or the actual number of occupants of a building at any given 
time is fundamental for the effective management of various building operation functions, ranging 
from security concerns to energy savings targets, especially in complex buildings with different internal 
kinds of use. Occupant’s locations within the building vary throughout the day, therefore it is difficult to 
characterize the number of people that occupy a particular space and for what duration, because 
human behaviour is considered stochastic in nature. In general, occupancy monitoring in buildings is of 
high interest, since occupancy significantly contributes to the performance of the building. Therefore, 
there is a need for detailed occupancy knowledge. 
There are several state-of-the-art approaches regarding occupancy inference, whose performance and 
effectiveness depend each time on data availability and quality. A brief description of the latest state-
of-the-art studies related to non-intrusive occupancy detection and occupancy estimation techniques is 
given in deliverable D3.2 “First User Tracking Algorithms”. 
This document is an accompanying document of the code developed within Task T3.2, and describes 
the algorithmic approaches that have been developed for occupancy detection and estimation in 
different indoor environments. State-of-the-art related work is presented in the next section. Final 
results about the performance of machine learning classifiers used for occupancy inference are 
provided along with a presentation of an easy-to-use graphical user interface for occupancy inference, 
based on simple household parameters. 
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2 Machine learning – Evaluation measures 
 

In this section, the machine learning classifier that has been decided to be used for occupancy 
inference based on its classification performance among known classification approaches is described. 
Evaluation measures are also presented. 
 

2.1 Machine learning technique – Decision of dominant classifier 
In this section, we briefly describe the Random Forest classifier that has been selected as the core of 
occupancy inference methodology, among other classification approaches initially described in 
deliverable D3.2 “First User Tracking Algorithms”. In D3.2 the best known and state-of-art machine 
learning classification techniques, such as support vector machine (with polynomial and radial basis 
function kernels), decision trees, random forest, naïve Bayes, logistic regression, back-propagation fully-
connected neural network and adaboost approach for ensemble learning, along with hidden Markov 
models and conditional random fields, were initially described and tested for their classification 
performance on energy consumption data from a domestic environment that accommodates three 
occupants.  
The data were gathered using smart plugs (power consumption) sensors. As for the occupancy related 
data (for training the algorithms), they were also measured from the field using highly accurate, active 
infrared door counter sensors. 
All the simulation and experimental results described in deliverable D3.2 “First User Tracking 
Algorithms” point to the fact that random forest and decision tree machine learning classifiers show a 
slightly higher accuracy on their classification performance, compared to the other tested classifiers. 
Moreover, they have managed to achieve an overall high performance (F1-Score: 83.37% and 82.79%, 
respectively) (see Section 2.2 Evaluation measures). Thus, based on classification performance, random 
forest is the dominant classifier among state-of-art classification approaches regarding the specific 
problem of occupancy inference using energy consumption data from a domestic environment. So, it 
has been selected as the core of the occupancy inference algorithm described in Section 3. A brief 
description of random forest classifier is provided in Section 2.1.1 below. 
 

2.1.1 Random Forest 
Random forest, also known as random decision forest, is an ensemble of decision trees and each 
decision tree is constructed by using a random subset of the training data, while the output class is the 
mode of the classes decided by each decision tree. Random forest is the highest in accuracy among 
current classifiers, it runs efficiently on large databases and it can handle a vast amount of input 
variables without variable deletion [Breiman99]. 
The random forest mechanism is versatile enough to deal with both supervised classification and 
regression tasks. However, to keep things simple, we focus in this introduction on regression analysis, 
and only briefly survey the classification case. 
Our goal in this section is to provide a concise but mathematically precise presentation of the algorithm 
for building a random forest. The general framework is nonparametric regression estimation, in which 
an input random vector 𝑋 ∈ [0,1]𝑝 is observed, and the goal is to predict the square integrable random 
response 𝑌 ∈ 𝑅 by estimating the regression function 𝑚(𝑥) =  𝐸[𝑌|𝑋 =  𝑥]. With this aim in mind, we 
assume we are given a training sample 𝐷𝑛 =  (𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛) of independent random variables 
distributed the same as the independent prototype pair (𝑋, 𝑌). The goal is to use the data set 𝐷𝑛 to 
construct an estimate 𝑚𝑛: [0,1]𝑝 → 𝑅 of the function 𝑚. In this respect, we say that the regression 
function estimate 𝑚𝑛 is (mean squared error) consistent if 𝐸[𝑚𝑛(𝑋) −  𝑚(𝑋)]2  →  0 𝑎𝑠𝑛 → ∞ (the 
expectation is evaluated over 𝑋 and the sample 𝐷𝑛). 
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A random forest is a predictor consisting of a collection of 𝑀 randomized regression trees. For the 

𝑗 − 𝑡ℎ tree in the family, the predicted value at the query point 𝑥 is denoted by 𝑚𝑛(𝑥; 𝛩𝑗;  𝐷𝑛) where 

𝛩1, … , 𝛩𝛭 are independent random variables, distributed the same as a generic random variable 𝛩 and 
independent of 𝐷𝑛. In practice, the variable 𝛩 is used to resample the training set prior to the growing 
of individual trees and to select the successive directions for splitting. 
At this stage, we note that the trees are combined to form the (finite) forest estimate: 
 

𝑚∞,𝑛(𝑥; 𝛩1, … , 𝛩𝛭 , 𝐷𝑛) =  
1

𝑀
∑ 𝑚𝑛(𝑥; 𝛩𝑗, 𝐷𝑛)

𝑀

𝑗=1

 (1) 

 
In the (binary) supervised classification problem [Devroye96], the random response 𝑌 takes values in 
{0, 1} and, given 𝑋, one has to guess the value of 𝑌 . A classifier or classification rule 𝑚𝑛 is a Borel 
measurable function of 𝑥 and 𝐷𝑛 that attempts to estimate the label 𝑌 from 𝑥 and 𝐷𝑛. 
 

 
Figure 1: Breiman’s random forest algorithm. 
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We now provide some insight on how the individual trees are constructed and how randomness kicks 

in. In Breiman’s [Breiman99] original forests, each node of a single tree is associated with a 

hyperrectangular cell. At each step of the tree construction, the collection of cells forms a partition of 

[0,1]𝑝 . The root of the tree is [0,1]𝑝 itself, and the terminal nodes (or leaves), taken together, form a 

partition of [0,1]𝑝 . If a leaf represents region 𝐴, then the regression tree outputs on 𝐴 the average of 

all 𝑌𝑖 for which the corresponding 𝑋𝑖 falls in 𝐴. Algorithm 1 describes in full detail how to compute a 

forest’s prediction. Figure 1 provides a brief description of Breiman’s random forest algorithm. 

 

2.2 Evaluation measures 
 
Different performance metrics are used to evaluate different machine learning algorithms. For now, we 
will be focusing on the ones used for classification problems. We can use classification performance 
metrics such as Log-Loss, Accuracy, AUC (Area under Curve) etc. For a two-class classification scenario, 
in order to assess our models, we use the measures of precision, recall, accuracy and F1-score, which 
are computed from the contents of the confusion matrix of the classification predictions (see Table 1). 
True positive and false positive cases are denoted as TP and FP, while true negative and false negative 
are denoted as TN and FN respectively. The terms associated with the confusion matrix are briefly 
described below: 

 

 True Positives (TP): True positives are the cases when the actual class of the data point was 
1(True) and the predicted is also 1(True). 

 True Negatives (TN): True negatives are the cases when the actual class of the data point was 
0(False) and the predicted is also 0(False). 

 False Positives (FP): False positives are the cases when the actual class of the data point was 
0(False) and the predicted is 1(True). False is because the model has predicted incorrectly and 
positive because the class predicted was a positive one.  

 False Negatives (FN): False negatives are the cases when the actual class of the data point was 
1(True) and the predicted is 0(False). False is because the model has predicted incorrectly and 
negative because the class predicted was a negative one. 

 
The ideal scenario that we all want is that the model should give 0 False Positives and 0 False Negatives. 
But that’s not the case in real life, as any model will NOT be 100% accurate most of the times. 
In order to fit the classification evaluation in the occupancy detection problem, we will assign the 
classes’ absence(0) and presence(1). Precision is the ratio of predicted true positive cases to the sum of 
true positives and false positives and is given by the equation: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

 
Recall is the proportion of the true positive cases to the sum of true positives and false negatives and is 
given by the equation: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

 
Accuracy is the fraction of the total number of predictions that were correct. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(4) 
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Precision or recall alone cannot describe a classifier’s efficiency. That’s why F1-score is introduced as a 
combination of these two metrics. It is defined as twice the harmonic mean of precision and recall and 
is the metric we will be most referring to. 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

(5) 

 
A value closer to one means better combined precision and recall of the classifier, whereas lower 
values imply worst accuracy or precision or both. 
 

Table 1: Confusion matrix for occupancy inference. 

 
Predicted class 

Absence Presence 

Actual 
Class 

Absence TP FN 

Presence FP TN 

 
The confusion matrix is one of the most intuitive and easiest metrics used for finding the correctness and 

accuracy of the model. It is used for classification problems where the output can be of two or more 

types of classes. The form of Table 1 is similar in multi-class multi-label classification scenarios, and the 

calculation of precision, recall, accuracy and F1-score is based on all the classes and then on averaging 

them to get a single real number measurement. 
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3 Occupancy Inference in Indoor Environments 
 

In this section we present an overview of the available environmental and energy consumption data 
used for occupancy inference, along with the final occupancy inference methodology that have been 
developed in enCOMPASS. The method exploited for occupancy inference utilizes the random forest 
machine learning algorithm for classification, as it achieves higher classification performances among 
others. As a result, a model is created in advance through a training process. Furthermore, the 
methodology supports a two-class occupancy inference (absence / presence). 
 

3.1 Data collection and setup for occupancy inference algorithm 

3.1.1 Data collection and setup 
 
The information retrieved from domestic environments (dwellings) is gathered with the use of smart 
meters (environmental and energy). The data were recorded in 15 minutes time intervals, namely 96 
measurements per day per variable. The initial aggregated dataset contains Humidity, Luminance, 
Temperature and Power consumption. Another available variable called Occupancy, which counts the 
internal occupancy (0 for absence / 1 for presence) is used as ground truth for training machine learning 
models. These data were retrieved from three external databases. All the available data are stored in 
three (3) internal databases, one for each enCOMPASS pilot: SHF, SES and WVT. The data use for 
training and testing are retrieved automatically by the proposed algorithm. 
An additional feature/variable included in data model is the Humidity Ratio (W). The Humidity Ratio is 
calculated using the measured temperature. The saturation pressure over liquid water (𝑝𝑤𝑠 𝑖𝑛 𝑃𝑎) is 
calculated with: 
 

ln(𝑝𝑤𝑠) =  
𝐶1

𝑇
+ 𝐶2 + 𝐶3𝑇 + 𝐶4𝑇2 + 𝐶5𝑇3 + 𝐶6ln (𝑇) 

(6) 

 

where 𝐶1 = 5.8𝑒 + 03,  𝐶2 = 1.39𝑒 + 00, 𝐶3 = −4.864𝑒 − 02, 𝐶4 = 4.176𝑒 − 05, 𝐶5 = −1.445𝑒 −
08, 𝐶6 = 6.545𝑒 + 00. 𝑇 is the absolute temperature, 𝐾 = 𝐶 + 273.15.  
The Humidity Ratio is calculated using the following equation: 
 

𝑊 =  0.622
𝑝𝑤𝑠

𝑝 − 𝑝𝑤𝑠
 

 

(7) 

 

where 𝑝 is taken as the standard atmospheric pressure 101.325𝑘𝑃𝑎. 
 

3.1.2 Data cleansing and pre-processing 

All the available data are pre-processed under two basic conditions: 

1. to retain 15 minutes time interval per feature by a pre-processing among selected dates;  
2. missing values are filled using forward and backward fill.  

The data processing of features takes place for those dwellings where all key features (Humidity, 
Luminance, Temperature and Power consumption) have at least on measurement for a selected period. 
This condition aims to provide a functional dataset that contains all the information that the trained 
model needs to perform efficiently and effectively. Below, the measurements of energy consumption 
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per dwelling are provided in Figure 2 (MySQL Workbench 6.3 CE view). Their re-construction after 
preprocessing and the addition of Humidity Ratio is given in Figure 3 (Python 3.6 view). The form of the 
dataset for the selected dwelling for a given time period, shown in Figure 3, is given as input to the 
occupancy inference algorithm. 

 

Figure 2: Energy consumption measurements from SHF database (MySQL Workbench view). 

 

Figure 3: Dataset for selected dwelling after pre-processing (Python view). 
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3.2 Machine learning based occupancy estimation approach using random 

forest classifier 
 
In this section, a brief description of the updated approach for occupancy inference in dwellings is 
provided. Occupancy inference is based on dwellings’ overall energy consumption and environmental 
measurements designed and implemented in previous work (see D3.2 “First User Tracking 
Algorithms”). The steps that the proposed algorithm follows are given below: 
 

 Selection by the end of a time interval for occupancy inference. In the case of the pilots, by 
default the two previous days are automatically selected for inferring the occupancy of the 
pilot buildings. 
 

 Dwelling based predictions for a given time period. The algorithm can determine which pilot 
buildings have measurements for: 

o Selected dates  
o Key features / variables. 

 

 Pre-processing for the missing values (forward and backward fill of missing values).    
 

 Execution of the Random Forest classification method, as the one with the highest classification 
and predictive performance among known machine learning classifiers.  

 

 Usage of state of art metrics to determine precision, recall, accuracy and F1-score. 
 

 Prediction of occupancy measurements for the current interval.  
 

A flow chart of the proposed algorithm is given in Figure 4, which shows the classifier gets as input all 

the environmental and overall energy consumption features in order to provide a decision about the 

occupancy inference for: 

a) a selected interval 

b) selected pilot building 

 

 

 

 

 

 

 

 

 

Figure 4: Flow chart of proposed algorithm. 
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More specifically, the data stored in the database are pre-processed and cleaned, so to improve data 

quality and overall classifier performance and effectiveness. The pre-processing operation steps are: 

c) check dwellings have at least one recording for each feature for a given time period,  

d) check time intervals between features recording are 15 minutes,  

e) fill missing data (backward and forward fill),  

f) calculate additional feature (humidity ratio). 

After the pre-processing step, several random forest models are trained and the one with higher 

accuracy is selected as the one that will be used for occupancy inference (OI). The results are visualized 

with a functional and easy-to-use graphical user interface (GUI), briefly described in Section 5. 
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4 Experimental setup and results 
 

In this section, we present performance evaluation results of the machine learning classifiers used for 
occupancy inference proving the dominance of random forest classifier compared to other machine 
learning classifiers (support vector machine (with polynomial and radial basis function kernels), 
decision trees, random forest, naïve Bayes, logistic regression, back-propagation fully-connected neural 
network). The simulation analysis is made on data from SHF, SES and WVT databases. Simulation results 
show again, as for the data from domestic environment (see D3.2 “First User Tracking Algorithms”), 
that random forest achieves the highest predictive performance, compared to other tested classifiers. 
 

4.1 Simulation setup 
 
Our main objective is to find the predictive model that is more efficient on occupancy inference based 
on energy consumption data. To that end, our simulation schema is based on the application of all 
tested classifiers. For cross-validation of our results, we generate a training set and a testing set, in a 
percent of 70% and 30%, respectively of the tested dataset. We generate 100 Monte Carlo iterations 
for different parameter scenarios in each classifier. For support vector machine with polynomial kernel, 
𝜃 takes the values 𝜃 = (𝑠𝑡𝑎𝑟𝑡 = 10, 𝑒𝑛𝑑 =  40, 𝑠𝑡𝑒𝑝 =  10) and the polynomial degree takes the 
values 𝑝 = (2,6,1). For support vector machine with radial basis function kernel 𝜎 varies 𝜃 =
(0.001,0.01,0.1) and the constant C as 𝐶 = (100,1000). The classic back-propagation full connected 
network has a single hidden layer and the number of neurons varies as 𝑛 = (100,200,10). The random 
forest has an ensemble of 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = (20,100,20) decision trees. Other classifiers tested here are 
naïve Bayes, logistic regression and decision trees, which have been used utilizing default parameters 
from python sklearn library. The combination of all values of parameters and a size of 100 Monte Carlo 
iterations for each case leads to a total of 3900 tested cases. For the definition of machine learning 
classifiers parameters, see D3.2 “First User Tracking Algorithms”. 
 

4.2 Simulation results 
 
In this section, the simulation results of all machine learning classifiers tested for occupancy inference 
on data from SHF database are presented. 

 
Table 2: Database SHF. Simulation results of support vector machine with radial basis function kernel for precision, recall, accuracy 

and F1-score (estimated averages) for 100 Monte Carlo iterations (highest values in bold). 

𝑪 𝝈 Precision (%) Recall (%) Accuracy (%) F1-score (%) 

100 0.001 89.75 88.76 87.91 89.25 

100 0.01 89.88 89.01 87.98 89.44 

100 0.1 89.77 88.65 87.34 89.21 

1000 0.001 89.65 88.39 87.94 89.02 

1000 0.01 88.93 87.29 86.18 88.10 

1000 0.1 88.28 87.67 86.19 87.97 
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Table 3:Database SHF. Simulation results (in %) of support vector machine with polynomial kernel for precision, recall, accuracy and 
F1-score (estimated averages) for 100 Monte Carlo iterations (highest values in bold). 

𝒑 𝜽 Precision (%) Recall (%) Accuracy (%) F1-score (%) 

2 10 93.77 92.26 89.33 93.01 

2 20 93.77 92.26 89.33 93.01 

2 30 93.77 92.26 89.33 93.01 

2 40 93.77 92.26 89.33 93.01 

3 10 95.47 88.39 87.84 91.79 

3 20 92.49 87.42 84.86 89.88 

3 30 92.43 88.19 87.88 90.26 

3 40 92.93 88.61 87.83 90.72 

4 10 89.98 89.13 86.29 89.55 

4 20 89.62 88.42 87.67 89.02 

4 30 88.84 87.48 86.72 88.15 

4 40 88.34 87.51 86.73 87.92 

5 10 68.21 95.26 91.25 79.50 

5 20 78.21 88.02 90.38 82.83 

5 30 91.23 87.95 91.86 89.56 

5 40 91.38 87.88 91.85 89.60 

6 10 91.23 87.86 91.83 89.51 

6 20 91.47 87.98 92.34 89.69 

6 30 91.34 88.01 92.01 89.64 

6 40 91.72 88.41 91.05 90.03 

 

Table 4: Database SHF. Simulation results (in %) of naive Bayes, logistic regression and decision trees for precision, recall, accuracy 
and F1-score (estimated averages) for 100 Monte Carlo iterations (highest values in bold). 

Metric Naïve Bayes 
Logistic 

regression 
Decision Tree 

Precision (%) 83.08 80.23 94.09 

Recall (%) 92.59 94.28 93.62 

Accuracy (%) 80.65 78.66 97.88 

F1-score (%) 87.58 86.69 93.82 

 
  



 
 

enCOMPASS - D3.4Final User Tracking Algorithms - Version 1.0 21 
 

Table 5: Database SHF. Simulation results (in %) of (a) random forest and (b) back-propagation network for precision, recall, 
accuracy and F1-score (estimated averages) for 100 Monte Carlo iterations (highest values in bold). 

(a) 

Estimators Precision (%) Recall (%) Accuracy (%) F1-score (%) 

20 94.37 95.96 92.80 95.16 

40 95.35 96.63 94.04 95.99 

60 94.44 97.31 93.80 95.85 

80 94.74 96.97 93.75 95.84 

100 94.77 97.64 94.29 96.19 

 
(b) 

Neurons Precision (%) Recall (%) Accuracy (%) F1-score (%) 

100 74.79 83.28 76.24 78.81 

120 75.93 84.31 75.87 79.90 

140 75.21 83.33 76.71 79.06 

160 76.07 84.52 76.33 80.07 

180 76.12 84.03 76.58 79.88 

 

From simulation results presented in Table 2, Table 3, Table 4, and Table 5, one can see that random 

forest classifier has the dominant predictive performance compared to other tested machine learning 

classifiers. More specifically, the highest accuracy and F1-score (87.98% and 89.44%, respectively) for 

support vector machine (with radial basis function kernel) takes place when 𝐶 = 100, 𝜎 = 0.01. For 

support vector machine (with polynomial kernel), the highest accuracy and F1-score (92.34% and 

93.01%, respectively) takes place when 𝑝 = 6, 𝜃 = 20 and 𝑝 = 2, 𝜃 = 40. Naive Bayes, logistic 

regression and decision trees have 80.65%, 78.66% and 97.88%, respectively, accuracy and 87.58%, 

86.69% and 93.82%, respectively, F1-score. For random forest classifier, the highest accuracy and F1-

score (94.29% and 96.19%, respectively) takes place when the internal decision trees of the forest are 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 =  100. As for back-propagation fully connected neural network the highest accuracy and 

F1-score (76.71% and 80.07%, respectively) takes place when layer neurons are 𝑛 = 140 and 𝑛 = 160, 

respectively. 

Similar simulation results (not reported for the sake of conciseness) are computed for SES database, 

where again, random forest is the dominant classifier compared to others. In the specific case of the 

WVT database, the algorithm has been tested with energy consumption, temperature and humidity 

information, and results are presented below. 
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Table 6: Database WVT. Simulation results of support vector machine with radial basis function kernel for precision, recall, accuracy 
and F1-score (estimated averages) for 100 Monte Carlo iterations (highest values in bold). 

𝑪 𝝈 Precision (%) Recall (%) Accuracy (%) F1-score (%) 

100 0.001 100.00 27.69 72.83 43.37 

100 0.01 90.91 30.77 72.83 45.98 

100 0.1 86.67 40.00 75.14 54.74 

 

Table 7: Database WVT. Simulation results (in %) of support vector machine with polynomial kernel for precision, recall, accuracy 
and F1-score (estimated averages) for 100 Monte Carlo iterations (highest values in bold). 

𝒑 𝜽 Precision (%) Recall (%) Accuracy (%) F1-score (%) 

2 10 79.17 32.76 74.57 46.34 

2 20 78.57 37.93 75.72 51.16 

2 30 79.31 39.66 76.30 52.87 

2 40 79.31 39.66 76.30 52.87 

3 10 80.65 43.10 77.46 56.18 

3 20 80.65 43.10 77.46 56.18 

3 30 78.12 43.10 76.88 55.56 

3 40 80.65 43.10 77.46 56.18 

4 10 62.22 48.28 72.83 54.37 

4 20 57.63 58.62 71.68 58.12 

4 30 50.00 51.72 66.47 50.85 

4 40 54.84 58.62 69.94 56.67 

5 10 65.38 58.62 75.72 61.82 

5 20 58.06 62.07 72.25 60.00 

5 30 68.42 54.17 70.52 60.47 

5 40 67.31 55.21 68.92 60.67 

6 10 59.70 57.97 67.63 58.82 

6 20 61.14 56.98 66.10 58.99 

6 30 62.05 55.27 66.32 58.46 

6 40 62.76 56.74 68.86 59.60 
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Table 8: Database WVT. Simulation results (in %) of naive Bayes, logistic regression and decision trees for precision, recall, accuracy 
and F1-score (estimated averages) for 100 Monte Carlo iterations (highest values in bold). 

Metric Naïve Bayes 
Logistic 

regression 
Decision Tree 

Precision (%) 46.83 100.00 68.18 

Recall (%) 80.82 33.82 66.18 

Accuracy (%) 53.18 73.99 74.57 

F1-score (%) 59.30 50.55 67.16 

 
Table 9: Database WVT. Simulation results (in %) of (a) random forest and (b) back-propagation network for precision, recall, 

accuracy and F1-score (estimated averages) for 100 Monte Carlo iterations (highest values in bold). 

(a) 

Estimators Precision (%) Recall (%) Accuracy (%) F1-score (%) 

20 67.21 62.12 73.99 64.75 

40 72.41 62.69 76.30 67.20 

60 71.43 58.82 74.57 64.52 

80 74.44 62.36 76.88 68.25 

100 73.33 64.71 76.88 68.75 

 
(b) 

Neurons Precision (%) Recall (%) Accuracy (%) F1-score (%) 

100 90.44 24.64 69.36 39.08 

120 77.78 30.43 68.79 43.75 

140 75.00 30.43 68.21 43.30 

160 94.44 24.64 69.36 39.08 

180 94.44 24.64 69.36 39.08 

 

From simulation results presented in Table 6, Table 7, Table 8 and Table 9, one can see that the random 

forest classifier again achieves the highest predictive performance compared to other tested classifiers. 

The maximum F1-score achieved for support vector machine with radial basis function kernel is 54.74%, 

for support vector machine with polynomial kernel is 61.82%, for back-propagation network is 43.75%, 

for naive Bayes, logistic regression and decision tree is 59.30%, 50.55% and 67.16%, respectively, while 

for random forest is 68.75%. 
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5 Algorithm Graphical User Interface (GUI) 
 
In this section, a simple graphical user interface of the occupancy inference algorithm is presented, 
which has been developed for demonstration purposes. 
 
In Figure 5 the database login window with the parameters of Host, Port and Database selection is 
shown. The end-user can select among encompass_model_shf, encompass_model_ses and 
encompass_model_wvt, so as to work with the data (features and dwellings) stored in SHF, SES and 
WVT databases, respectively. After login, a message of successful connection pops up. 
 

 
Figure 5:Login and successful connection windows. 

The window shown in Figure 6 pops up after successful connection, where the selection of analysis 
time period takes place. The end-user must choose the start date (StartDate) and the end date 
(EndDate) and then select the “Select start date” and “Select end date” commands so as to verify 
selected dates.  

 

Figure 6:Interval, dwelling selection, dwelling update command and prediction plot command. 
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Moreover, the end-user must select the Update dwelling command, so that the algorithm can detect 
the dwellings with at least one record for Humidity, Luminance, Temperature and Power consumption 
in the selected time interval.  

After the update of dwellings, the end-user can select the dwelling of interest so as to proceed with 
the analysis. Finally, the end-user must press the Predict & Plot button and the occupancy inference 
results are provided (see Figure 7).  

 

 

Figure 7:Occupancy inference results. 

 

In case of a different time interval selection, the process after login must be repeated with the same steps.  
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Conclusions 
 
The present document described the final version of an algorithm for occupancy inference, based on 
the initial version described in D3.2 “First User Tracking Algorithms”. The algorithm is dwelling based 
and aims to predict dwellings’ overall occupancy per 15 minutes in a day. The inputs of the model are 
environmental measurements (temperature, humidity, luminance, humidity ratio) and overall energy 
consumption of the dwelling. Except humidity ratio, which is calculated, all other environmental 
measurements and energy consumption are provided by smart meters. The proposed methodology 
utilizes random forest machine learning classifiers as the core model trainer, based on current results 
on SHF, SES and WVT internal databases and previous simulation results where the input features were 
household appliances (oven, hood, washing machine, TV, hair dryer, fridge) (see D3.2 “First User 
Tracking Algorithms”). In both cases, random forest classifier has better or slightly better predictive 
performances compared to other tested machine learning classifiers.  
The algorithm is also provided with a visualization framework with a functional and easy-to-use 
graphical user interface. Finally, part of this work has been published and presented at the 
International Conference on Energy Science and Electrical Engineering (ICESEE’17) [Vafeiadis17]. 
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