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EXECUTIVE SUMMARY 

“D.3.3 First energy disaggregation algorithms” is specified in the enCOMPASS Description of Action as defin-

ing “the initial prototype, with documentation, of the algorithms for energy disaggregation into end uses”. 

This deliverable is one of the outputs of the project task “T3.4 Disaggregation of energy use”, which aims at 

developing algorithms to disaggregate the building's energy consumption to the level of individual users 

and appliances. This task is fed with the information provided by T 3.1 and T 3.2: it uses the aggregate en-

ergy consumption at building level at different temporal resolutions, and it also uses the so called “signa-

tures” of specific appliances, to disaggregate the total consumption into its components. Accuracy will de-

pend on the quality and resolution of the available input data, but the objective of this task is to study a set 

of algorithms able to gracefully degrade their performance, to provide useful results under a wide spectrum 

of situations. The output of the algorithms allows for adaptive, in-situ feedback on energy consumption and 

recommendations for energy saving actions. 

For an overall description of the dependencies among the above task T3.4 and the other Project tasks and 

work packages, please refer to the section 3.1.2 “detailed work description” of the enCOMPASS proposal.  

This deliverable presents the algorithms developed in the enCOMPASS project to derive, directly from me-

tered energy consumption data, mathematical models describing the users’ consumption behavior. Specifi-

cally, the algorithms focus on energy end-use characterization, which aims at decomposing the aggregate 

(i.e., whole household) high-resolution energy flow data collected from a single measurement point into 

energy end use categories (e.g., washing machine, dishwasher), in order to understand how, when and 

where energy is used. The developed disaggregation algorithms are tested against data available in the lit-

erature or synthetically generated by open source software emulators of residential energy consumption 

traces. 

The Java Source code has bene released and it is available at this link: 

https://drive.switch.ch/index.php/s/bCw7DrvPs8Ae4dZ 

This document is structured as follows:  

 Section 1 describes the goals and motivations of end-use energy disaggregation approaches. 

 Section 2 provides a review on the state-of-the-art algorithms for energy end-use disaggregation. 

 Section 3 describes the novel algorithms for energy end-use characterization developed within the 

enCOMPASS project.  

 Section 4 discusses the performance assessment of the algorithm by testing it on real energy con-

sumption data. 

 Section 5 provides conclusions and sketches future enhancements of the disaggregation algorithm. 
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1 INTRODUCTION 

High spatial (household) and temporal (up to few seconds) resolution energy consumption data gathered 

by smart meters provide a detailed user consumption profile. This enables an accurate characterization of 

the energy consumption share and patterns of end-uses, which, in turn, constitute the basis for the math-

ematical modeling of individual and collective user behaviors.  

Within the enCOMPASS project, Work Package 3 addresses energy end-use disaggregation, which aims at 

decomposing the aggregate (i.e., whole household) energy consumption data collected from a single meas-

urement point into energy end use categories, to understand how, when and where energy is used. Beside 

using this information for building mathematical models of the user behavior, the generated knowledge 

can be also directly provided to customers, municipalities and energy utilities, so that: 

1. household’s components have a detailed knowledge on their energy usage. For instance, through 

the enCOMPASS platform, customers can log into a web page to view their hourly consumption, as 

well as charts on their energy end-uses patterns across major end-use categories (e.g., washing 

machine, dishwasher, cloth dryer, fridge) and they can be alerted of occurring consumption anoma-

lies. Furthermore, personalized hints for reducing energy consumption can be directly delivered by 

means of the recommender system, that will be described in Deliverable D4.2 First user behavior 

modeler and recommender; 

2. customers can be informed on potential savings in differing the usage of some energy using appli-

ances (e.g., washing machine and dishwasher) to peak-off hours, or in replacing low-efficient appli-

ances into high-efficient ones, and personalized rewards schemes can be then proposed to stimu-

late customers to adopt energy saving actions. 
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2 STATE OF THE ART ON ENERGY END-USE CHARACTERIZATION 

There is a rich literature on automatic disaggregation methods (known as Non Intrusive Appliance Load 

Monitoring -NIALM- algorithms) aiming at decomposing the aggregate household energy consumption data 

collected from a single measurement point into device-level consumption data without requiring a limited 

interaction with the user. The first algorithm for NIALM was proposed by Hart in 1992 (Hart, 1992). Hart’s 

approach is based on the segmentation of the aggregate power signal into successive steps, which are then 

matched to the appliance signatures. However, this method is not able to detect multistate appliances and 

it is neither able to decompose power signals made of simultaneous on/off events on multiple appliances. 

Since Hart’s contribution, the problem of Nonintrusive Appliance Load Monitoring has been extensively 

studied in the literature. The survey papers (Zoha, Gluhak, Imran, & Rajasegarar, 2012) and (Zeifman & 

Roth, 2011) give a complete review on the state-of-the-art of NILAM methods, which can be classified into 

two main categories: optimization based and machine learning based approaches. The methods based on 

sparse coding (Figueiredo, Ribeiro, & de Almeida, 2013), (Dong, Ratliff, Ohlsson, & Sastry, 2013) and integer 

programming (Suzuki, Inagaki, Suzuki, Nakamura, & and Ito, 2008), (Camier, Giroux, Bouchard, & 

Bouzouane, 2013) belong the first category, while the approaches discussed in (Srinivasan, Ng, & Liew, 

2006), (Zia, Bruckner, & Zaidi, 2011), (Parson, Ghosh, Weal, & Rogers, 2012), (Johnson & Willsky, 2013), 

which make use of Hidden Markov Models and Artificial Neural Networks belong to the second category. 

All of the aforementioned algorithms have generally shown good performance in estimating the fraction of 

energy consumed by each appliance, however most of them lack in skill in accurately reconstructing the 

power consumption trajectories over time. This represents a serious drawback, since: (i) no information on 

the time of use of each appliance can be derived, and so feedback on potential savings in differing the us-

age of some devices to peak-off hours cannot be provided; (ii) anomalous events, such as a device consum-

ing an exceptional amount of power over an extended period, can be barely detected; (iii) it is not evident if 

the accuracy in the estimate of the fraction of energy consumed by each appliance is due to fortuitous bal-

ancing mechanisms. 

Our proposed approach, fully described in (Piga, Cominola, Giuliani, Castelletti, & Rizzoli, 2016), exploits the 

assumption that the power demand profiles of each appliance are piecewise constant over time (as it is 

typical for energy use patterns of household appliances), and takes advantage of the information on the 

time-of-day probability in which a specific appliance is likely to be used. The disaggregation problem is 

treated as a least-square error minimization problem, with an additional (convex) penalty term aiming at 

enforcing the disaggregated signals to be piecewise constant over time. Besides being able to handle situa-

tions where multiple appliances are operating simultaneously, the proposed algorithm is able to recon-

struct the consumption trajectories over time, thus overcoming the main drawback of the disaggregation 

methods available in the literature. 
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3 ENCOMPASS ALGORITHM FOR ENERGY END-USE DISAGGREGATION 

This Section provides a description of the proposed disaggregation algorithm that can be used to decom-

pose the aggregated energy consumption readings of a household in the consumption patterns of individu-

al appliances. The Section is organized as follows: basic background notions and problem assumptions are 

reported in Sections 3.1 and 3.2, the problem of data disaggregation is formalized in Sections 3.3-3.5; the 

training procedure adopted to tune the algorithm parameters and the procedure used to solve the dis-

aggregation problem are discussed in Section 3.6. 

3.1 BACKGROUND ON QUADRATIC PROGRAMMING 

Quadratic Programming aims at minimizing a (convex) quadratic cost function of several variables subject 

to linear constraints, i.e., 

min𝑥
1

2
𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥 (3.1a) 

𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏 (3.1b) 

𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞 (3.1c) 

where x ∈  ℝn is the set of optimization variables, H ∈  ℝn,n is a positive semidefinite matrix and f ∈  ℝn 

denote, respectively, the Hessian and the gradient of the objective function in 3.1a. The terms A ∈  ℝm,n 

and b ∈  ℝm define the linear inequality constraints on the variables x (with m being the number of ine-

quality constraints). Similarly, Aeq  ∈  ℝ
meq,n and beq  ∈  ℝ

meq  are used to define meq linear equality con-

straints on x. 

3.2 ASSUMPTIONS 

Our proposed disaggregation algorithm is based on sparse optimization and works under the following as-

sumptions: 

A. Each appliance can only operate at a single mode at each time instant. 

B. A rough knowledge of the energy consumption of each appliance at each operating mode is sup-

posed to be available. For instance, they can be estimated based on a training dataset by means of 

k-means clustering as proposed in (Likas, Vlassis, & and Verbeek, 2003). 

C. The energy consumption profile of each appliance is piecewise constant over time (as it typically 

happens for many residential electrical appliances). 

3.3 PROBLEM STATEMENT 

Consider the situation where N different electrical appliances i=1,..,N are available in a house. Each appli-

ance i is characterized by Ci operating modes. Let Bi
(j) be the energy consumption of the i-th appliance at 

the j-th operating mode (with j = 1,…, Ci). Given the measure of the household-aggregated power consump-

tion, 𝑦(𝑡), we define the consumption estimation of the i-th appliance �̂�𝑖(𝑡, 𝜃𝑖): 
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�̂�𝑖(𝑡, 𝜃𝑖) = 𝑦𝑖(𝑡) − 𝑒𝑖(𝑡) = [𝐵𝑖
(1)
… 𝐵𝑖

(𝐶𝑖)] [
𝜃𝑖
(1)
(𝑡)
…

𝜃𝑖
(𝐶𝑖)(𝑡)

] (3.2) 

Where the vector 𝜃𝑖
  contains the optimization binary variables related to each operating mode of the i -th 

appliance (their value should be either 0 or 1 and they must satisfy the constraint ∑ 𝜃𝑖
(𝑗)(𝑡)

𝐶𝑖
𝑗=1 = 1, i.e., 

each appliance works at a single operating mode at every instant t) and 𝑒𝑖
  models the noise that affects en-

ergy consumption measurements.  

Given a sequence DT of T observations of the aggregate energy consumption readings 𝑦(𝑡) (with t=1,…,T), 

our scope is the reconstruction of the individual energy usage patterns 𝑦𝑖(𝑡) (with t=1,…,T) of each electri-

cal appliance based on the household aggregate energy consumption readings in the sequence DT. 

3.4 STANDARD LEAST SQUARE ESTIMATION 

In order to estimate the energy consumption 𝑦𝑖(𝑡) of each appliance i at time t, the time varying parame-

ters 𝜃𝑖
(𝑗)(𝑡) can be computed by solving the standard least squares problem: 

min
𝜃
𝑖
(1)(𝑡),…,𝜃

𝑖

(𝐶𝑖)(𝑡)

𝑖=1,…,𝑁
𝑡=1,…,𝑇 

(∑ 𝑦(𝑡) − ∑ �̂�𝑖(𝑡, 𝜃𝑖)
𝑁
𝑖=1

𝑇
𝑡=1 )

2
    (3.3) 

Where �̂�𝑖(𝑡, 𝜃𝑖) is defined by equation 3.2. 

Unfortunately, the least-squares optimization problem (3.3) is overparametrized, since it involves more un-

known parameters than measurements. As a consequence, overfitting occurs in computing the time vary-

ing variables 𝜃𝑖
(𝑗)(𝑡) by means of the least squares approach. To overcome this problem, we must intro-

duce regularization (or penalty) terms in (3.3) in order to impose that each appliance operates at a single 

mode at each time instant (assumption A) and that usage patterns are piecewise constant over time (as-

sumption C). 

Based on assumption A and on the fact that the variables 𝜃𝑖
(𝑗)(𝑡) are binary, we can rewrite equation (3.3) 

as follows: 

min
𝜃𝑖
(1)(𝑡),…,𝜃

𝑖

(𝐶𝑖)(𝑡)

𝑖=1,…,𝑁
𝑡=1,…,𝑇 

(∑ 𝑦(𝑡) − ∑ �̂�𝑖(𝑡, 𝜃𝑖)
𝑁
𝑖=1

𝑇
𝑡=1 )

2
+ 𝜆1∑ ∑ ‖[

𝜃𝑖
(1)
(𝑡)
…

𝜃𝑖
(𝐶𝑖)(𝑡)

]‖

0

𝑇
𝑡=1

𝑁
𝑖=1  (3.4) 

s.t. 

∑𝜃𝑖
(𝑗)(𝑡)

𝐶𝑖

𝑗=1

= 1; 𝜃𝑖
(𝑗)(𝑡) ≥ 0;  𝑖 = 1,… ,𝑁; 𝑡 = 1,… , 𝑇 

Where ‖ ‖0 indicates the 0-norm of a vector (i.e., number of nonzero elements). This way, the second 

term in formula (3.4) minimizes the number of nonzero elements in the vector [𝜃𝑖
(1)(𝑡) … 𝜃𝑖

(𝐶𝑖)(𝑡)]. 
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Moreover, constraint ∑ 𝜃𝑖
(𝑗)(𝑡)

𝐶𝑖
𝑗=1 = 1 imposes the presence of at least a nonzero element in the vector. 

The non-negative parameter 𝜆1 must be tuned (for instance by means of cross validation, see Section 

3.6.1.3) to balance the tradeoff between minimizing the fitting error (when 𝜆1is low) and minimizing num-

ber of the nonzero elements in the vector [𝜃𝑖
(1)(𝑡) … 𝜃𝑖

(𝐶𝑖)(𝑡)] (when 𝜆1 is high). Because of the 0-

norm, problem (3.4) is nonconvex and thus difficult to solve with commercial numerical optimization solv-

ers. However, an approximate solution of Problem (3.4) can be obtained by replacing the 0-norm with the 

(convex) 1-norm (i.e., sum of the absolute values of the elements of the vector). Furthermore, we can im-

prove the estimation by multiplying the variables 𝜃𝑖
(𝑗)(𝑡) by a vector of nonnegative weights 

[𝑤𝑖
(1)(𝑡) … 𝑤𝑖

(𝐶𝑖)(𝑡)], thus leading to the following formula: 

min
𝜃𝑖
(1)(𝑡),…,𝜃

𝑖

(𝐶𝑖)(𝑡)

𝑖=1,…,𝑁
𝑡=1,…,𝑇 

(∑ 𝑦(𝑡) − ∑ �̂�𝑖(𝑡, 𝜃𝑖)
𝑁
𝑖=1

𝑇
𝑡=1 )

2
+ 𝜆1∑ ∑ ‖[

𝑤𝑖
(1)(𝑡)
…

𝑤𝑖
(𝐶𝑖)(𝑡)

]  ⨀ [
𝜃𝑖
(1)(𝑡)
…

𝜃𝑖
(𝐶𝑖)(𝑡)

]‖

1

𝑇
𝑡=1

𝑁
𝑖=1  (3.5) 

 

where ⨀ indicates the element-wise multiplication. The choice of the weights [𝑤𝑖
(1)(𝑡) … 𝑤𝑖

(𝐶𝑖)(𝑡)] will 

be discussed in Section 3.6.1.1. 

Additionally, based on assumption C, we add a second regularization term as follows: 

min
𝜃𝑖
(1)(𝑡),…,𝜃

𝑖

(𝐶𝑖)(𝑡)

𝑖=1,…,𝑁
𝑡=1,…,𝑇 

(∑ 𝑦(𝑡) − ∑ �̂�𝑖(𝑡, 𝜃𝑖)
𝑁
𝑖=1

𝑇
𝑡=1 )

2
+

𝜆1∑ ∑ ‖[
𝑤𝑖
(1)(𝑡)
…

𝑤𝑖
(𝐶𝑖)(𝑡)

]  ⨀ [
𝜃𝑖
(1)(𝑡)
…

𝜃𝑖
(𝐶𝑖)(𝑡)

]‖

1

+𝑇
𝑡=1

𝑁
𝑖=1 𝜆2∑ ∑ ‖𝑘𝑖 [

𝜃𝑖
(1)(𝑡) − 𝜃𝑖

(1)(𝑡 − 1)
…

𝜃𝑖
(𝐶𝑖)(𝑡) − 𝜃𝑖

(𝐶𝑖)(𝑡 − 1)

]‖

∞

𝑇
𝑡=2

𝑁
𝑖=1  (3.6) 

s.t. 

∑𝜃𝑖
(𝑗)(𝑡)

𝐶𝑖

𝑗=1

= 1; 𝜃𝑖
(𝑗)(𝑡) ≥ 0;  𝑖 = 1,… ,𝑁; 𝑡 = 1,… , 𝑇 

where 𝜆2 is a tuning parameter analogous to 𝜆1. The values ki are a-priori specified nonnegative weights 

which can be set as described in Section 3.6.1.2. Note that the infinity norm of a vector (i.e., maximum ab-

solute value among the elements of the vector) is used in the second regularization term. This way, only the 

largest time variation among the elements of the vector [𝜃𝑖
(1)(𝑡) … 𝜃𝑖

(𝐶𝑖)(𝑡)] affects the cost function. 

The problem formulated in equation (3.6) is a convex optimization problem, which can be solved by means 

of numerical optimization algorithms.  
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3.5 FORMULATION OF THE DISAGGREGATION PROBLEM IN TERMS OF QUADRATIC PROGRAMMING 

It is necessary to convert the optimization problem (3.6) in a formulation analogous to that reported in 

equations 3.1. In order to obtain this matrix form, we proceed step by step with each part of the objective 

function. First, we rewrite the aggregation error as follows: 

(∑𝑦(𝑡) −∑�̂�𝑖(𝑡, 𝜃𝑖)

𝑁

𝑖=1

𝑇

𝑡=1

)

2

= ‖𝑌 − Φ𝜃‖2
2 

Where the 𝐿2 norm is used to compute the sum over time T; the vector 𝜃 (of size 𝜃 ∙ 𝑇) contains the opti-

mization variables (as explained before; the matrix Φ (of size 𝑇 × 𝜃 ∙ 𝑇) contains the bases for every appli-

ance at each time: 

Φ =

[
 
 
 
 
𝐵1
𝑇 0 0 0

0 𝐵1
𝑇 0 0

⋮
0

⋮
0

⋱ ⋮
0 𝐵𝑖=1

𝑇
⏟            

𝑇

𝐵1
𝑇 0 0 0

0 𝐵1
𝑇 0 0

⋮
0

⋮
0

⋱ ⋮
0 𝐵𝑖=1

𝑇
⏟            

𝑇

⋯
⋯

⋯

]
 
 
 
 

 

Multiplying this matrix with the optimization variables vector 𝜃, we obtain exactly ∑ �̂�𝑖(𝑡, 𝜃𝑖)
𝑁
𝑖=1 . 

The vector Y is the aggregated consumption 𝑌 = [𝑦(1) 𝑦(2) … 𝑦(𝑇)]. 

By means of the following algebraic steps: 

‖𝑌 − Φ𝜃‖2
2 = (𝑌 −Φ ∙ 𝜃)𝑇 ∙ (𝑌 − Φ ∙ 𝜃) =  (𝑌𝑇 − (Φ ∙ 𝜃)𝑇⏟    

(Φ∙𝜃)𝑇=Φ𝑇∙𝜃𝑇

 
)

 

∙ (𝑌 − Φ ∙ 𝜃)

= (𝑌𝑇 −Φ𝑇 ∙ 𝜃𝑇) ∙ (𝑌 − Φ ∙ 𝜃)

= 𝜃𝑇 ∙ Φ𝑇 ∙ Φ ∙ 𝜃 − 𝜃𝑇 ∙ Φ𝑇 ∙ Y⏟      
𝜃𝑇∙Φ𝑇∙Y=(𝜃𝑇∙Φ𝑇∙Y)𝑇=Y𝑇∙Φ∙𝜃

− Y𝑇 ∙ Φ ∙ 𝜃 + Y𝑇 ∙ Y

= 𝜃𝑇 ∙ Φ𝑇 ∙ Φ ∙ 𝜃⏟        
𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑡𝑒𝑟𝑚

 − 2Y𝑇 ∙ Φ ∙ 𝜃⏟      
𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑒𝑟𝑚

  + Y𝑇 ∙ Y⏟  
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑒𝑟𝑚

 
 

It follows that 𝐻 = 2Φ𝑇 ∙ Φ and 𝑓 = −2Y𝑇 ∙ Φ, whereas the constant term can be neglected for the mini-

mization. 

Then, we consider the sparsity term: 

𝜆1∑∑‖[
𝑤𝑖
(1)(𝑡)
…

𝑤𝑖
(𝐶𝑖)(𝑡)

]  ⨀ [
𝜃𝑖
(1)(𝑡)
…

𝜃𝑖
(𝐶𝑖)(𝑡)

]‖

1

𝑇

𝑡=1

𝑁

𝑖=1

 

The 𝐿1 norm of a vector is the sum of the absolute value of its components. For this reason, we can ''substi-

tute'' this part of the objective function with some constraints. 

Assume we have the vector v with n elements: ‖𝑣‖∞⇔ max (|𝑣1|, |𝑣2|, … , |𝑣𝑛|). We may write an equiv-

alent constraint by introducing a slack variable s which, after the minimization, will assume the max value. 
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|𝑣𝑖| ≤ 𝑠 {
𝑣𝑖 ≤ 𝑠 ⇔𝑣𝑖 − 𝑠 ≤ 0

𝑣𝑖 ≥ −𝑠⇔−𝑣𝑖 − 𝑠 ≤ 0
 

These inequalities must be added into matrices A and b, thus leading to the following expression of the ob-

jective function: 

min
𝜃𝑖
(1)(𝑡),…,𝜃

𝑖

(𝐶𝑖)(𝑡)

𝑖=1,…,𝑁
𝑡=1,…,𝑇

𝑠1,…,𝑆𝑁(𝑇−1)
𝑟1,…,𝑟𝑁∙𝑇 

(∑𝑦(𝑡) −∑�̂�𝑖(𝑡, 𝜃𝑖)

𝑁

𝑖=1

𝑇

𝑡=1

)

2

+ 𝜆1 ∙ 𝑤1 ∙ 𝑟1 +⋯+ 𝜆1 ∙ 𝑤𝑁∙𝑇 ∙ 𝑟𝑁∙𝑇 + 𝜆2 ∙ 𝑘1 ∙ 𝑠1 +⋯+ 𝜆2 ∙ 𝑘𝑁

∙ 𝑠𝑁∙(𝑇−1) 

The matrices A and b now contain 𝑁 ∙ ∑𝐶𝑖 ∙ (𝑇 − 1) additional rows to include the 𝐿1 norm inequalities, 

whereas the vector f contains 𝑁 ∙ (𝑇 − 1) additional elements. The optimization variables are now 𝜃, r and 

s. 

Moreover, we rewrite the non-negativity constraints of variables 𝜃 as follows −𝜃𝑖
(𝑗)(𝑡) ≤ 0, thus leading to 

 𝐴 = [
−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1

] and 𝑏 = [
0
⋮
0
]. 

Similarly, from the constraint ∑ 𝜃𝑖
(𝑗)(𝑡)

𝐶𝑖
𝑗=1 = 1, we obtain: 

𝐴𝑒𝑞  = [
−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1

] and 𝑏 = [
1
⋮
1
]. 

3.6 DISAGGREGATION ALGORITHM 

In this chapter we explain how the disaggregation algorithm is trained and how the disaggregation problem 

is solved. 

3.6.1 Training 

According to assumption B, a training dataset D’T’ is available. The training set consists of the energy con-

sumption profiles of each appliance available in the house. An intrusive monitoring period is required to 

build the set D’T’. During this period, the energy consumption pattern of each appliance is observed, and in-

formation on time-of-day probability characterizing the usage of each appliance/fixture can be also gath-

ered. 

Moreover, the training dataset is used to estimate the optimization weights 𝑤𝑖
(𝑗)(𝑡) and ki, as well as the 

weights 𝜆1 and 𝜆2, as discussed in the following subsections. 
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3.6.1.1 Choosing the weights 𝒘𝒊
(𝒋)
(𝒕) 

The main criterion for the choice of the weights 𝑤𝑖
(𝑗)(𝑡) is the following: if the i-th appliance is likely to op-

erate at mode j at time t, then the variable 𝜃𝑖
(𝑗)(𝑡) is likely to be equal to 1, whereas the remaining varia-

bles 𝜃𝑖
(𝑔)(𝑡) (with g ≠ j) are likely to be equal to 0. This means that the scaling weights 𝑤𝑖

(𝑔)(𝑡) (with g ≠ j) 

should be higher than 𝑤𝑖
(𝑗)(𝑡). The information on time-of-day probability of the usage of each appliance 

can be inferred from the training dataset D’T’. More in detail, for given i and t, the weights 𝑤𝑖
(1)(𝑡), …, 

𝑤𝑖
(𝐶𝑖)(𝑡) can be set as follows: 

 compute the number of occurrences of the i-th fixture/appliance operating at mode j at the time 

samples t+n∙24h, where n=0,1,-1,2,-2,… Denote the resulting integer as 𝑞𝑖
(𝑗)(𝑡). 

 If 𝑞𝑖
(𝑗)(𝑡) ≠ 0, set the weight 𝑤𝑖

(𝑗)(𝑡) =
1

𝑞𝑖
(𝑗)(𝑡)

 Otherwise, set𝑤𝑖
(𝑗)(𝑡) = 0 

Note that the weights 𝑤𝑖
(𝑗)(𝑡) could be also computed in a more sophisticated way, e.g. by considering not 

only the observations at time t, t+24h, t-24h, t+48h, t-48h, … but also the observations (possibly weighted) 

within given time intervals [t+n∙24h+Δ, t+n∙24h-Δ]. 

3.6.1.2 Choosing the weights 𝒌𝒊(𝒕) 

The weights ki (with i=1,…,N) can be chosen as follows: if the i-th appliance changes its operating mode 

rarely over the time, than the time variation of the parameters 𝜃𝑖
(𝑗)(𝑡) should be more penalized w.r.t. the 

time variation of the parameters characterizing another appliance which frequently changes its operating 

mode. The weight ki can be then inversely proportional to the number of mode changes of the i-th appli-

ance observed in the training dataset. 

3.6.1.3 Choosing the weights 𝝀𝟏and 𝝀𝟐 

In order to set the weights 𝜆1 and 𝜆2, a subset D’Tc of length Tc <T’ is extracted from the original training da-

taset D’T’ and used as calibration dataset. The values of 𝜆1 and 𝜆2, are then defined by means of a cross-

validation procedure by minimizing with a grid search the Total Relative Mean Square Error (TRMSE) over 

the calibration dataset D’Cal, where the TRMSE is defined as: 

𝑇𝑅𝑀𝑆𝐸 =∑
∑ (𝑦𝑖(𝑡) − �̂�𝑖(𝑡))

2𝑇𝑐
𝑡=1

∑ 𝑦𝑖
2(𝑡)𝑇𝑐

𝑡=1

𝑁

𝑖=1

 

 

3.6.2 Solving the Disaggregation Problem 

After computing the weights, we have to define the matrices H, f, A, b, Aeq and beq to be provided to the 

solver, by means of the equations reported in Section 3.5. Note that their size exhibit a linear dependency 

on the time horizon T and on the number of appliances (and their operational bases). 

As the problem has been modelled as a convex function, in order to incorporate the inequality constraints 

in the objective function we adopt a logarithmic barrier function: such function forces the objective func-
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tion in the space regions where constraints are not satisfied. Therefore, the objective function is modified 

as follows: 

 

min
𝜃𝑖
(1)(𝑡),…,𝜃

𝑖

(𝐶𝑖)(𝑡)

𝑖=1,…,𝑁
𝑡=1,…,𝑇

𝑠1,…,𝑆𝑁(𝑇−1)
𝑟1,…,𝑟𝑁∙𝑇 

(∑𝑦(𝑡) −∑�̂�𝑖(𝑡, 𝜃𝑖)

𝑁

𝑖=1

𝑇

𝑡=1

)

2

+ 𝜆1 ∙ 𝑤1 ∙ 𝑟1 +⋯+ 𝜆1 ∙ 𝑤𝑁∙𝑇 ∙ 𝑟𝑁∙𝑇 + 𝜆2 ∙ 𝑘1 ∙ 𝑠1 +⋯+ 𝜆2 ∙ 𝑘𝑁

∙ 𝑠𝑁∙(𝑇−1) −
1

𝑡
∑log(−𝐴𝑥 + 𝑏) 

The problem is then solved by means of the Newton’s method, which works as follows: 

1. Start with a feasible point 

2. Compute the Newton step ∆𝑥𝑛𝑡 by solving the following equation: 

[
∇2𝑗(𝑥(𝑘)) 𝐴𝑒𝑞

𝑇

𝐴𝑒𝑞
 0

] ∙ [
∆𝑥𝑛𝑡
𝜇𝑁𝑆

] = [−∇
 𝑗(𝑥(𝑘))
0

], with 𝜆(𝑥(𝑘)) = √−∇ 𝑗(𝑥(𝑘))𝑇 ∙ ∆𝑥𝑛𝑡 

3. Perform backtracking line search (see details below) 

4. Update 𝑥(𝑘+1) = 𝑥(𝑘) + 𝑡 ∙ ∆𝑥𝑛𝑡 

5. Repeat steps 1-4 until ∆𝑥𝑛𝑡 matches the stopping criterion. 

Where 𝑥(𝑘+1) is the new candidate point, 𝜇𝑁𝑆 is the dual optimal value, 𝜆(𝑥(𝑘)) is the stopping criterion, 

𝑗(𝑥) is our objective function, ∇𝑗(𝑥) is its first derivative, i.e.: 

∇𝑗(𝑥) = 𝐻 ∙ 𝑥 + 𝑓 − 𝜇 ∙∑
−1

−𝐴𝑖
𝑇 ∙ 𝑥 + 𝑏𝑖

∙ 𝐴𝑖
𝑖

 

And ∇2𝑗(𝑥) is its second derivative, i.e.: 

∇2𝑗(𝑥) = 𝐻 −
1

𝑡
∙∑

[
 
 
 

𝑎𝑖,1
2

𝑎𝑖,1 ∙ 𝑎𝑖,2

𝑎𝑖,2 ∙ 𝑎𝑖,1

𝑎𝑖,2
2

⋯
…

𝑎𝑖,𝑛 ∙ 𝑎𝑖,1
𝑎𝑖,𝑛 ∙ 𝑎𝑖,2

⋮ ⋮ ⋱ ⋮
𝑎𝑖,1 ∙ 𝑎𝑖,𝑛 𝑎𝑖,2 ∙ 𝑎𝑖,𝑛 ⋯ 𝑎𝑖,𝑛

2
]
 
 
 

𝑖

∙
−1

−𝐴𝑖
𝑇 ∙ 𝑥 + 𝑏𝑖

2 

In (unconstrained) minimization, a backtracking line search is a search scheme based on the Armijo–

Goldstein condition, aimed at determining the maximum step size for a move along a given search direc-

tion. It starts with a relatively large estimate of the step size and iteratively shrinks it (i.e., "backtracking") 

until a decrease of the objective function is observed that approximates the local gradient of the objective 

function. 

The search method works as follows: it initializes t=1, then given a descent direction ∆𝑥, while the inequali-

ty 𝑓(𝑥 + 𝑡 ∙ ∆𝑥𝑛𝑡) > 𝑓(𝑥) + 𝛼 ∙ 𝑇 ∙ ∇𝑓(𝑥) ∙ ∆𝑥𝑛𝑡 holds, t is updated as 𝑡 ← 𝛽 ∙ 𝑡. The parameters α and β 

are chosen within the intervals (0,0.5) and (0,1), respectively. 
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4 FIRST DISAGGREGATION RESULTS 

The first disaggregation algorithm has been implemented in Java and a version is available here: 

 https://drive.switch.ch/index.php/s/bCw7DrvPs8Ae4dZ 

4.1 DATASET 

To assess the performance of our proposed disaggregation algorithm we use the AMPds dataset (Makonin, 

Popowich, Bartram, Gill, & and Bajic, 2013). It is available online and includes the energy consumption 

readings at one minute resolution collected from 21 breakers/loads of a single house located in the Van-

couver region in British Columbia, Canada from April 1, 2012 to March 31, 2013, with sampling frequency of 

one sample per minute. 

For the sake of analysis, we consider only the aggregate power consumption given by the sum of the power 

consumption readings of the following five electrical appliances: air conditioner (HPE), air heater (FRE), 

clothes dryer (CDE), fridge (FRE), and electronic workbench (EQE). These five appliances account for the 

largest contribution to the total energy consumption. 

To evaluate the robustness of our algorithm to measurement noise, the aggregate power signal 𝑦(𝑡) has 

been corrupted by means of an additive zero-mean random Gaussian noise 𝑒(𝑡) with standard deviation 

σ=4 W. Note that, because of such added noise, the aggregate power consumption signal may become 

negative. When this happens, the power consumption signal is replaced by the value 0 W. 

The AMPds dataset has been divided into two disjoint datasets: 

  A training dataset D’T’ containing the data for the days 1-15 June 2012, used to estimate the power 

demand of each appliance at each operating mode (i.e., the terms Bi
(j)) as well as the weights 

𝑤𝑖
(𝑗)(𝑡) and ki through the procedure discussed in Sections 3.6.1.1 - 3.6.1.3. Moreover, in order to 

tune the parameters 𝜆1 and 𝜆2, a calibration dataset D’Cal has been extracted from the original 

training dataset. Such a calibration dataset consists of the power readings from December 1, 2012 

to December 15, 2012. Note that the sub-metered power consumptions of each appliance are sup-

posed to be available in the training and calibration phase. 

 The algorithm is validated on a portion of dataset extracted from the summer period and a portion 

from the winter period, since we expect seasonality to impact on the consumption pattern of the 

different end uses. In particular, a validation dataset DT, which consists of the aggregate power 

readings from July 1, 2012 to July 31, 2012 (plotted in Figure 1) and from January 1, 2013 to January 

31, 2013 (plotted in Figure 2) has been considered for the validation. In the validation phase, the 

sub-metered power consumption measurements are not supposed to be available and the aggre-

gate power consumption signal is decomposed into the power consumption of each appliance by 

means of the proposed disaggregation algorithm. The sub-metered power consumption measure-

ments are only used to assess the algorithm performance. 

Note that, in order to evaluate the impact of different data granularities on the disaggregation perfor-

mance, we also resampled the consumption patterns using coarser sampling frequencies (i.e., one sample 
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every 2, 5, 10 or 15 minutes) thus including the data temporal resolution that will be available in the en-

COMPASS pilot case studies (15minutes). 

 

Figure 1: Electric power consumption from July 1, 2012 to July 31, 2012. 

 

Figure 2: Electric power consumption from January 1, 2013 to January 31, 2013. 

4.2 PERFORMANCE METRICS 

We consider the following performance metrics have been used to assess the performance of the proposed 

disaggregation algorithm: 

The Estimated Energy Fraction Index (EEFI), defined as: 

ℎ̂𝑖 =
∑ �̂�𝑖(𝑡)
𝑇′
𝑡=1

∑ ∑ �̂�𝑖(𝑡)
𝑇′
𝑡=1

𝑁
𝑖=1

 

The index ℎ̂𝑖 provides the fraction of energy assigned to the i-th appliance and should be compared to the 

Actual Energy Fraction Index (AEFI), defined as: 



enCOMPASS D3.3 First Energy Disaggregation Algorithms 

Version 1.0  

 

ℎ𝑖 =
∑ 𝑦𝑖(𝑡)
𝑇′
𝑡=1

∑ ∑ 𝑦𝑖(𝑡)
𝑇′
𝑡=1

𝑁
𝑖=1

 

which computes the actual fraction of energy consumed by the i-th appliance. 

The Relative Square Error (RMSE), defined as: 

𝑅𝑆𝐸𝑖 =
∑ (𝑦𝑖(𝑡) − �̂�𝑖(𝑡))

2𝑇𝑐
𝑡=1

∑ 𝑦𝑖
2(𝑡)𝑇𝑐

𝑡=1

 

which provides a normalized measure of the difference between the actual and the estimated power con-

sumption of the i-th appliance. 

Moreover, we compare the average AEFI computed over a yearly basis, since we consider yearly averaged 

data as benchmark on the disaggregation accuracy. 

4.3 TESTING AND VALIDATION 

The proposed disaggregation approaches have been tested against the validation dataset DT (i.e., July 2012 

and January 2013). The performance metrics introduced in Section 4.2 and the estimated disaggregate 

power profiles are computed in order to assess the performance of the algorithms. Specifically: 

 Table 3 shows the Relative Square Error (RSE) for each appliance for the two validation periods and 

energy consumption granularities ranging from 1 to 15 mins; 

 Table 4 shows the Estimated Energy Fraction Index (EEFI) for each appliance, along with the Actual 

Energy Fraction Index (AEFI) for the two validation periods and energy consumption granularities 

ranging from 1 to 15 mins; 

 Table 5 shows the Estimated Energy Fraction Index (EEFI) for each appliance, along with the Actual 

Energy Fraction Index (AEFI) computed over yearly basis, for the two validation periods and energy 

consumption granularities ranging from 1 to 15 mins. 

The reported results show that the algorithm ensures a graceful performance degradation when coarsening 

the consumption data granularity. Moreover, the obtained disaggregation percentages are very close to the 

actual ones, with errors always below 6% when comparing EEFIs and AAFIs. Moreover, when comparing 

EEFIs to yearly-based AAFIs, the proposed disaggregation method shows consistently higher accuracy with 

respect to yearly averaged data (which reach errors up to 30% in the summer period). 
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Table 3: RSE values for each appliance computed for the two testing periods 

Sampling 

rate (min) 

winter summer 

 HPE FRE CDE FGE EQE HPE FRE CDE FGE EQE 

1 0.1012 0.6394 0.0746 0.4076 0.0496 0.0557 0.1833 0.0142 0.1746 0.0498 

2 0.1001 0.0594 0.1003 0.0594 0.0498 0.4323 0.2043 0.0750 0.1854 0.0591 

5 0.2266 0.3102 0.2781 0.3114 0.0632 0.6837 0.2249 0.1289 0.1332 0.0581 

10 0.2414 0.2657 0.2939 0.3394 0.063 1.553 0.2364 0.2865 0.149 0.0634 

15 0.1945 0.3343 0.2679 0.3457 0.0641 1.4266 0.217 0.279 0.1684 0.0607 

 

Table 4: EEFI vs AEFI (percentages) of each appliance computed for the two testing periods 

Sampling 

rate (min) 

HPE FRE CDE FGE EQE 

AEFI EEFI AEFI EEFI AEFI EEFI AEFI EEFI AEFI EEFI 

winter 

1 54.84 53.79 5.15 5.53 16.06 15.88 12.59 15.54 11.37 9.26 

2 54.82 55.82 5.18 4.30 16.09 15.24 12.55 15.79 11.36 8.84 

5 55.07 62.40 5.16 3.26 15.74 10.42 12.66 15.22 11.37 8.70 

10 54.77 62.38 5.08 3.06 16.20 10.75 12.63 15.16 11.32 8.65 

15 55.19 61.58 5.30 3.20 15.11 11.11 12.85 15.31 11.55 8.79 

Summer 

1 24.98 26.44 8.68 6.18 12.24 14.67 32.32 35.03 21.78 17.68 

2 24.54 27.18 8.32 5.59 13.60 14.91 31.97 35.55 21.56 16.77 

5 24.67 28.91 8.33 5.08 13.57 14.21 31.82 34.95 21.60 16.86 

10 24.79 31.76 8.36 5.06 13.61 11.78 31.60 34.91 21.64 16.49 

15 24.58 31.38 8.60 5.53 13.28 11.99 32.09 34.53 21.46 16.57 
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Table 5: EEFI vs yearly AEFI (percentages) of each appliance computed for the two testing periods 

Sampling 

rate (min) 

HPE FRE CDE FGE EQE 

AEFI EEFI AEFI EEFI AEFI EEFI AEFI EEFI AEFI EEFI 

winter 

1 54.84 

 

55.05 

 

5.15 

 

4.12 

 

16.06 

 

15.29 

 

12.59 

 

14.19 

 

11.37 

 

11.35 

 

2 54.82 5.18 16.09 12.55 11.36 

5 55.07 5.16 15.74 12.66 11.37 

10 54.77 5.08 16.20 12.63 11.32 

15 55.19 5.30 15.11 12.85 11.55 

summer 

1 24.98 

 

55.05 

 

8.68 

 

4.12 

 

12.24 

 

15.29 

 

32.32 

 

14.19 

 

21.78 

 

11.35 

 

2 24.54 8.32 13.60 31.97 21.56 

5 24.67 8.33 13.57 31.82 21.60 

10 24.79 8.36 13.61 31.60 21.64 

15 24.58 8.60 13.28 32.09 21.46 
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5 CONCLUSIONS 

This document describes the disaggregation approaches implemented in the algorithm adopted by the en-

COMPASS platform to decompose the overall energy consumption pattern of a building in single end-uses. 

The proposed approach has been validated over real energy consumption traces retrieved from a publicly 

available database and its performance has been evaluated for different granularities of the aggregated 

energy consumption measurements, showing that graceful degradation of the disaggregation results is 

achieved and that still accurate results can be obtained also in the case of data with 15-mins resolution (i.e. 

the data temporal resolution that will be available in the enCOMPASS pilot case studies). 

As future work, the algorithm will be refined by leveraging the sensor data gathered by at the users’ prem-

ises by means of the encompass sensor kit. More in detail, the following sources of information will be ex-

ploited to improve the accuracy of disaggregation results: 

 Luminance measurements will be used to infer the on/off patterns of artificial lightening 

 Internal temperature measurements will be exploited to make inferences about the use of air con-

ditioning/heating plants 

 Information gathered from motion sensors will be relied upon to make inferences about the use of 

certain categories of appliances (e.g., if the house is supposed to be empty, it is very unlikely that 

electric appliances such as microwave oven or kettles are active) 

 Smart plugs capable of detecting on/off events (where available) will be used to identify the activity 

periods of single appliances 

 The energy consumption curves of single appliances measured via smart plugs (where available) 

will be incorporated in the training process of the algorithm 
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