
Model Based Rapid Prototyping and Evolution
of Web Application

Emanuele Falzone and Carlo Bernaschina

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano — Piazza L. Da Vinci, 21. I-20133 Milano, Italy
emanuele.falzone@mail.polimi.it, carlo.bernaschina@polimi.it

Abstract. We demonstrate a development work-flow for the co-evolution
of model and code, based on IFMLEdit.org, an online tool for the rapid
prototyping of web applications, and on common Version Control Sys-
tems. IFMLEdit.org exploits the Interaction Flow Modeling Language
(IFML), an OMG standard for describing the user’s interaction with the
application by means of flows of information in reaction to user events.
In the demo, attendees will be able to edit IFML specifications with
IFMLEdit.org, generate the first version of the code of a web/mobile
application from the model, improve the generated code with manually
added details (e.g. styling), evolve the original IFML model introducing
new requirements and re-generate the code of the updated version, in a
way that fully preserves the manually coded details. The demonstrated
approach solves the well-know problem of model driven forward engin-
nering of breaking the automated development cycle when features that
cannot be modelled are added manually to the generated code.

Keywords: Model Driven Development, Code Generation, Agile Devel-
opment.

1 Introduction

The software development process is a refinement loop that iteratively transforms
requirements into a final product. Iteration is fundamental to address incomplete,
loosely defined, or rapidly changing requirements. In web and mobile applications
development, the wide range of device screens and coding platforms makes the
ability to rapidly evolve and evaluate new releases even more critical.

In Web applications, UI development demands a sharp division between
structure (HTML) and style (CSS) for easy adaptation to various devices and
clients capabilities [2]. Complexity of UI layout and styling is shifted from HTML,
which describes the structure and semantics of the content, to CSS. While this
scenario enables advanced use-cases, in practice it may not achieve a real sep-
aration of concerns in all cases. To obtain advanced layout and styling effects,
the CSS rules often become dependent on the HTML structure, which increases
complexity, maintenance cost, and code duplication.

In the past years, coding practices shifted towards an effective compromise
between separation of concerns and development costs. Modern CSS frameworks,



such as Bootstrap1, Zurb Foundation2, Materialize CSS3, and many others, have
shown how sharing layout concerns between HTML and CSS layers can enhance
re-usability and eventually reduce development time. The same trend can be
seen in the field of Mobile Applications with Framework74, Flutter5 and many
others. This compromise blurs the line between structure and styling making
more and more difficult for M2T transformations to avoid conflicts at code level.

In this demo, we showcase IFMLEdit.org [1], an open-source on-line tool for
rapid prototyping of web and mobile applications that starts from a standard
OMG MDA language (IFML) and implements a lightweight environment for
developers to specify web and mobile applications and instantly generate their
code. In the demo, attendees will use the on-line tool to specify their requirements
in IFML, validate their model with in-browser emulation, generate and deploy
the code for a web application or cross-platform mobile application, manually
evolve the generated code by introducing details like styling or back-end service
endpoints, introduce new requirements at the model level and integrate the newly
generated code into the code-base preserving the manually applied changes.

2 Background: the Interaction Flow Modeling Language

IFML (Interaction Flow Modeling Language [3]) is an OMG standard that sup-
ports the platform-independent description of graphical user interfaces (UIs) for
devices such as desktop computers, laptops, mobile phones, and tablets. IFML
focuses on the structure and behavior of the application as perceived by the end
user, and references the data and business logic aspects insofar they influence the
users experience, i.e., the domain objects that provide content displayed in the
interface and the actions triggered from the interface. IFML allows developers
to specify the following aspects of an interactive application:

– The view structure and content: the general organization of the inter-
face is expressed in terms of ViewElements, along with their containment
relationships, visibility, and activation. Two classes of ViewElements exist:
ViewContainers, i.e., elements for representing the nested structure of the
interface, and ViewComponents, i.e., elements for content display and data
entry. ViewComponents that display content have a ContentBinding, which
expresses the link to the data source.

– The events: the occurrences that affect the state of the user interface,
produced by the users interaction, the application, or an external system.

– The event transitions: the consequences of an event on the user interface,
which can be the change of the ViewContainer, the update of the content
on display, the triggering of an action, or a mix of these effects. Actions are
represented as black boxes.

– The parameter binding: the input-output dependencies between ViewEle-
ments and Actions.

1 http://getbootstrap.com/
2 http://foundation.zurb.com/
3 http://materializecss.com/

4 http://framework7.io/
5 http://flutter.io/



3 Work-flow of the Demo

The demo will allow attendees to experience all the operations required to gen-
erate a prototype application. As a starting example, we have prepared a multi-
media player application; its model is shown in Figure 1a and comprises a single
page, with three components: a list, which shows the available songs, and two
details that represent the media player status and allow the user to start and
stop the selected song.

(a) Model (b) Generated & Customized Code

Fig. 1. Model Editing and Code Generation

IFML model editing. During the demo, users will compose the model of
Figure 1a, or a model of their choice, using the integrated editor. IFML elements
are inserted in the model by means of drag&drop from a palette on the left side.

Code generation. The developer can generate a fully functional prototype
launching a model-to-code transformation. Figure 1b shows the generated web
prototype, run on top of a client emulator inside the browser. In-browser em-
ulation allows the developer to test the current web or mobile release of the
prototype without installing any web server and also in absence of the Internet
connection. The developer can evaluate different application structures (e.g.,
single vs multiple pages) and interaction approaches (e.g., update on object se-
lection vs explicit update events) before the final code download.

Manual code editing. Once the generated code is downloaded, the devel-
oper can modify it in order to: 1) connect data sources to existing data pro-
visioning service endpoints; 2) introduce business logic, editing the code that
implements the Actions skeletons generated from the IFML model; 3) achieve
the desired look and feel by customizing the HTML template files and intro-
ducing custom CSS rules. Figure 1b shows the difference between the generated
code (upper left, white background) and the customized code (bottom right,
black background).

Model evolution. After a new requirement, the developer meeds to change
the original IFML model to introduce new features or change/remove existing
ones. Figure 2a shows a possible evolution of the base model with the introduc-
tion of a new list that allows the users to filter the songs by author.



(a) Model Editor (b) Generated Code

Fig. 2. Model Editing and Code Generation

Model and text co-evolution. The developer can generate a new proto-
type launching the model-to-code transformation. ALMOsT-Git, an automation
tool based on Git6, will reapply the previously introduced changes using the new
prototype as a starting point. If changes alter the application structure drasti-
cally, manual conflict resolution by the developer may be required. Figure 2b
shows the result of the procedure.

4 Conclusion

The demo allows attendees to explore the problems of MDD forward engineer-
ing, when manual and automatic code updates occur in parallel. IFMLEdit.org,
an online tool for the modeling and rapid prototyping of web and Mobile appli-
cations based on IFML allows Attendees to try out an application development
cycle that allows them to evaluate different variations of an application in a short
amount of time, by rapidly modifying the application model and generating re-
alistic prototypes, easily turned into deployable applications.

Acknowledgments This work has been partially supported by the European
Community, through the H2020 project enCOMPASS (Grant #723059).

References

1. Bernaschina, C., Comai, S., Fraternali, P.: IFMLEdit.org: Model driven rapid pro-
totyping of mobile apps. In: 4th IEEE/ACM International Conference on Mobile
Software Engineering and Systems, MOBILESoft@ICSE (2017)

2. Hall, C.A.: Web presentation layer bootstrapping for accessibility and performance.
In: Proceedings of the International Cross-Disciplinary Conference on Web Acces-
sibility, W4A (2009)

3. OMG: Interaction flow modeling language (IFML), version 1.0.
http://www.omg.org/spec/IFML/1.0/ (2015)

6 http://git-scm.com


