
Intelligent Code Generation for Model Driven
Web Development

Emanuele Falzone and Carlo Bernaschina

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano — Piazza L. Da Vinci, 21. I-20133 Milano, Italy
emanuele.falzone@mail.polimi.it, carlo.bernaschina@polimi.it

Abstract. Model Driven Development requires proper tools to derive
the implementation code from the application models. However, the use
of code generation tools may interfere with the software development and
maintenance practices, because most state-of-the art tools are incapable
of preserving manual modifications to the code when the implementation
is regenerated from the models. In this paper, we present an approach
which organizes the model transformation rules and the code architecture
in a way that preserves the parts of the code that are defined outside the
model-and-generate cycle, such as the code defining the look and feel of
the user interface and the connection to the required service endpoints.

Keywords: Model Driven Development, Code Generation, Agile Devel-
opment

1 Introduction

Model Driven Development (MDD) is the branch of software engineering that
advocates the use of models, i.e., abstract representations of a system, and of
model transformations as key ingredients of software development. Developers
use a general purpose (e.g. UML1) or domain specific (e.g. IFML2) modeling
language to specify systems under one or more perspectives, and use (or build)
suitable chains of transformations to refine the models into a final product (e.g.
executable code). Abstraction is the far most important aspect of MDD. It en-
ables developers to validate high level concepts and introduce details, which
increase complexity, later in the process. In the Forward Engineering approach
details are introduced via model transformations, which iteratively refine the
model eventually getting to the final product. After each model change, the pro-
cess is reiterated to produce a new version. Model to Model (M2M) and Model
to Text (M2T) transformations are tailored to achieve this goal. Transforma-
tions can be grouped into two groups: I) Model Enhancement. The model is
enhanced by the introduction of details that are fixed, or easily derivable from
the model itself with fixed rules. An example is a M2M transformation in the
Entity Relationship domain which maps hierarchies into equivalent entities and

1 http://www.uml.org 2 http://www.omg.org/spec/IFML/1.0/



relationships. II) Model Specialization. The model is refined by introducing
details specific for a target platform (e.g. system, language, . . . ). This is obtained
via a M2M or M2T transformation having a high-level source meta-model and
a platform specific target meta-model. An example is a M2T transformation
that maps a state machine representing GUI interactions to the source code of
a specific GUI framework. In this work we focus on model specialization.

Transformations should map each valid source model into one valid target
model deterministically. When the target meta-model has a higher expressive
power two scenarios are possible: I) Exploitation. The transformation exploits
the expressive power of the target meta-model to express in higher detail the
concepts defined in the source model. An example is a M2M transformation
that defines the semantics of a language by mapping it to a more expressive and
well defined one, like in [7], where Statecharts are used to define the semantics
of WebML, and in [5], where Place Chart Nets (PCN) are used to describe the
semantics of IFML. If the target meta-model (Statecharts, PCN) is more expres-
sive than the source model (WebML, IFML), all the valid models that cannot be
produced have no practical usage for the specific purpose of the transformation.
II) Ambiguity. More then one valid target model is a possible output candi-
date for the M2T transformation. The developer is responsible of directing the
transformation to take a decision among the possible alternative outputs. An
example is a M2T transformation that generates a GUI implementation from an
application model [4]; many visual representation can be produced, by taking
different assumptions on layout and styling. The model does not contain the
information required to generate fine grained styling details.

While it is not always possible to uniquely assign a transformation to one
of the two groups, the fuzziness introduced by the ambiguous transformation
scenario are the most interesting, and the main motivation of this work. Fuzzi-
ness arises from abstraction itself. The high-level description can ignore details
that are not uniquely inferable. A Forward Engineering approach requires such
unknowns to be solved by enhancing both meta-model and transformations to
remove uncertainties and maintain a unidirectional flow. This approach can lead
to loss of abstraction and diminishes the benefits of the MDD methodology. User
Interfaces (UI), and in particular web based ones, are a relevant example of this
situation. While abstraction simplifies reasoning about the application structure
and the high-level interaction, low-level details such as layout, sizing, colors or
gestures can completely change the final user experience. For special domain
applications a compromise can be achieved with approaches like the one imple-
mented in commercial tools (e.g. WebRatio3), where the high-level model can be
marked with ad hoc attributes allowing the M2T transformation to properly se-
lect a presentation template. While this approach has been successfully adopted
in the industry, it introduces a layer of complexity that can easily demand more
work than manual coding for application with highly specific presentation re-
quirements. In this paper, we discuss an alternative approach, which relaxes
the assumptions of Forward Engineering enabling the manual introduction of

3 http://www.webratio.com/



details (e.g. styling) in the generated code, while simplifying the resolution of
conflicts between the generated code and manual changes through the use of
good practices in coding and development work-flows.

The paper is organized as follows: Section 2 surveys model-based and text-
based approaches for the evolution of textual final products and current trends
on coding practices for web applications; Section 3 presents a novel approach
for the mitigation of the effects of fuzziness in M2T transformations; it uses as
running example a M2T transformation generating the source code of a web
application from an IFML model, while it has been implemented using the Ag-
iLe MOdel Transformation framework (ALMOsT.js[3]) the approach is generic
and can potentially be applied to every M2T transformation language; finally,
Section 4 draws the conclusions and gives an outlook on future work.

2 Related work

Model to text transformations can have deep impact on an MDD work-flow.
Various approaches and tools have been proposed to enhance them. Given the
template-based nature of such transformations, complexity can easily arise, es-
pecially during maintenance.

Various approaches and tools have been proposed to enhance or replace M2T
transformations. In [6] the automatic production of code generators from inter-
preters has been proposed avoiding the need for M2T transformations. In [13] a
polymorphic approach has been presented, showing how modularization and dy-
namic invocation of templates can reduce complexity and simplify maintenance.
Complexity can arise from changes in both source meta-model and target tech-
nologies. In [11] an approach to simplify M2T transformation evolution after a
meta-model change is discussed. In [8] a survey of possible approaches to orga-
nize model transformations is conducted, showing the effects of moving rapidly
evolving aspects of the architecture from the M2M transformations to the M2T
transformations and even outside of the MDD work-flow in a manually coded ab-
straction layer; the study focused on SQL queries. Model and Text co-evolution
has been proposed as a way to simplify M2T transformations. In [2] a bidirec-
tional M2T transformation approach based on Triple Graph Grammar (TGG)
has been proposed. The Abstract Syntax Tree (AST) representation of the tar-
get language is used in a bidirectional M2M transformation defined via TGG.
The AST is structured with particular attention to supporting extra chunks of
text that can be introduced during manual modifications, but are not directly
managed by the transformation. In general, solving text level co-evolution with
model level approaches can reduce complexity, at the cost of defining a parser
specific for the target language. In [9] a trace based framework for change re-
tainment has been proposed, which could be potentially applied in this scenario.
Increasing the complexity of M2T transformations can drastically increase com-
putation time. In [14] manual and automatically generated signatures (small,
efficiently computable proxies to the final text) are exploited to increase the
performance of the MDD pipeline.



Conflict Resolution at text level has been studied for a long time. Version
Control Systems (VCS) like Git4, Mercurial5 or SVN6 need to manage con-
flict resolution, in particular if working in a distributed environment. Coarse
grained/language agnostic [12] or fine grained/language specific [6] automatic
resolution approaches can be applied, leaving the manual intervention of the
developer as a fall-back.

Separation of Concerns. In Web Applications, UI development demands
a sharp division between structure (HTML) and style (CSS) for easy adaptation
to various devices and clients capabilities [10]. Complexity of UI layout and
styling is shifted from HTML, which describes the structure and semantics of
the content, to CSS. While this scenario enables advanced use-cases, in practice
it may not achieve a real separation of concerns in all cases. To obtain advanced
layout and styling, the CSS rules become dependent on the HTML structure,
which increases complexity, maintenance cost, and code duplication.

In the past years, coding practices shifted towards an effective compromise
between separation of concerns and development costs. Modern CSS frameworks,
such as Bootstrap7, Zurb Foundation8, Materialize CSS9, and many others, have
shown how sharing layout concerns between HTML and CSS layers can enhance
re-usability and eventually reduce development time. The same trend can be
seen in the field of Mobile Applications with Framework710, Flutter11 and many
others. This compromise blurs the line between structure and styling making
more and more difficult for M2T transformations to avoid conflicts at code level.

3 An M2T based hybrid automatic and manual approach
for Web application development

We propose a two steps approach to M2T transformations, which leverages both
MDD and manual coding, aiming at the reduction of maintenance costs. We use
as running example a code generator for web applications presented in [4], which
applies forward engineering via a M2T transformation from an high-level IFML
description of an application into a working prototype.

3.1 Requirements

We focus on agile development methods, such as SCRUM [15], which commands
developers to create minimum viable products rapidly and evolve them via fre-
quent iterations (sprints). As a reference usage scenario, we imagine a software
team, who decides to exploit MDD in its development, by progressively intro-
ducing requirements and freely experiment with the generated code in order to
enhance the user experience. Not all members of the team have a profound knowl-
edge of the MDD pipeline and each member contributes to the project based on

4 http://git-scm.com/
5 http://www.mercurial-scm.org/
6 http://subversion.apache.org/
7 http://getbootstrap.com/

8 http://foundation.zurb.com/
9 http://materializecss.com/

10 http://framework7.io/
11 http://flutter.io/



his role and expertise. Under the above mentioned drivers, the requirements of
the proposed methodology can be summarized as follows: 1) Model and Text
Co-Evolution. It must be possible to introduce new functional requirements
at model level and in parallel to modify directly the code-base, e.g., to improve
performance and/or styling. Changes applied to the generated code must be pre-
served after model change and implementation regeneration. 2) VCS Support.
The evolution of the project must be trackable using preexisting VCSs.

3.2 Intelligent Code Generation

The structure of the code generated by M2T transformations influences its main-
tainability. It should adhere to specific, possibly preexisting, best practices and
coding styles, to facilitate code maintenance and conflict resolution. The possible
aids can be divided in two main categories.

Project Structure. Modularization and separation of concerns improve
software maintainability. In the web domain, approaches for code and markup
modularization, such as CommonJS12, Asynchronous Module Definition (AMD)13

and Web Components14, have been so successful to influence such standards as
ECMAScript 6 [1] and HTML5 [16]. Splitting the generated code both logically
(components, modules, . . . ) and physically (files and folders) helps achieve both
model and text co-evolution and VCS support: it is easier for VCSs to identify
the updated files and for humans to contextualize and solve conflicts. Similarly
to protected areas in Acceleo15, a well structured project can automatically con-
centrate manual editing to specific areas of the code (e.g. GUI, service endpoints,
. . . ) and leave the majority of the generated code untouched (e.g., code devoted
to orchestration, routing, . . . ).

Coding Style. When files can be thoroughly affected by both model changes
and manual editing languages, specific approaches can be applied. Modern lan-
guages give to developers freedom over many non functional aspects of the code.
White-spaces and new-lines, identifiers names, order invariant statements can
lead to really different appearance, which retain the same semantics. Making
both developers and M2T transformations follow the same coding conventions
can help to address requirement #1, reducing friction between developers and
automatically generated code, as if the code generator were just another member
of the team. Common VCSs, such as Git, apply text based conflict resolution al-
gorithms [12], many of which are line based. Coding conventions can be enhanced
in order to facilitate such procedures. Some examples are: splitting statements
that can be possibly effected by both model changes and manual coding;

<!-- The class field is possibly effected by manual changes while the

data-bind field can be changes by the generator. -->

<div class="list-item" data-bind="text: fields['title']"/>

<!-- Splitting the tag in two avoids conflicts on the same line. -->

<div class="list-item"

data-bind="text: fields['title']"/>

12 http://wiki.commonjs.org/wiki/Modules
13 http://github.com/amdjs/amdjs-api

14 http://www.webcomponents.org/
15 http://www.eclipse.org/acceleo/



facilitate the insertion of new code without affecting nearby lines.
// Introducing a new item will mark the entire line as changed

var items = ['item1', 'item2'];

// Introducing a new items will not mark the entire array as changed

var items = [

'item1',

'item2', // The comma simplifies the insertion of new lines

];

Given the language-specific nature of code organization practices, we will not
enter into further details.

3.3 Conflict Resolution Strategy

Manual editing of the generated code (requirement #1) inevitably produces
conflicts, which are not different from the ones that arise from a classic VCS
based distributed work-flow (requirement #2). Different developers work at the
same time starting from different versions of the same code-base. Each developer
needs to synchronize its local copy of the repository with the central one, solving
potential conflicts that arise, before the changes are accepted. The code generator
can be treated as yet another developer, who applies changes on an outdated
repository. We will just consider conflicts that arise on the source code, we
will ignore concurrent changes on the model. The work-flow can be organized
as follow: 1) The initial model is constructed and the code generator is run
the first time. This revision of the source code G1 (1st Generated) is sent to
the central repository. 2) A developer introduces a new manual change, starting
from G1, producing revision M1 (1st Manual change) which is sent to the central
repository. 3) Concurrently, another developer introduces a new manual change,
also starting from G1. During synchronization possible conflicts are identified
and solved producing M2 (2nd Manual change) which is sent to the central
repository. 4) A change at model level is applied and the code generator is run
again. By applying this new version on top of G1 the generator is comparable
to the second developer. During synchronization possible conflicts are identified
and solved, by reapplying all the deltas introduced by each revision. Two new
revision are sent to the central repository; G2 containing the generated code and
M1,2 reintroducing the manual changes of M1 and M2 over G2.

Figure 1 shows the revision history resulting from various reiterations of
the proposed approach. The developer always sees a central repository, which
is aligned with all the changes manually introduced. The code generator can
be considered as a developer always out-of-sync who applies changes on top
of the latest Gi revision. The introduction of an artificial, purely generated,
Mi revision has the unwanted side effect of polluting the history with highly

Fig. 1. Revisions history.



redundant code decreasing the benefits of a VCS system (requirement #2). The
proposed approach schema can be enhanced to reduce this effect. The list of
files effected by a model change is generally small compared to the whole code-
base. It is possible to exploit this characteristic to reduce the impact of Gi and
M1∼j revisions by concentrating on the files that are actually effected. After code
generation, conflicts are addressed on a per file base. Each project file can be in 4
possible states: 1) The file was not part of the code-base (effect of a constructive
change in the model). It is added in the Gi revision as a newly created file. 2) The
file was created in a Gi revision but is not part of the generated code anymore
(effect of a destructive change in the model). It is removed from the code-base
and the changes applied to it in any Mj or M1∼j revision are discarded. 3) The
file was created in a Gi revision and it is not changed. It can be skipped and the
current state of the file is preserved. 4) The file was created in a Gi revision and
it is changed. Synchronization will start from the latest Gi revision in which it
is contained. All the changes applied after Gi, both in Mj or M1∼j revisions,
are reapplied and manual interventions is requested if automatic resolution fails.
The file is added to the current Gi revision and the version after the resolution
of the conflicts is added to the current M1∼j revision.

4 Discussion and Future Work

This paper presented an approach for model and text co-evolution with particu-
lar attention in conflicts prevention and conflict resolution via VCS work-flows.

The approach is being used in the MDD development of web and mobile
applications16 for a energy demand management project, in which multiple edi-
tions of a energy awareness game are produced in rapid sprints, to support a
user-centric design cycle in which stakeholders contribute to the design of ap-
plications. The described approach has been applied to the generation of game
versions from IFML models, with a hybrid approach [4], in which both the pre-
sentation code and the code for connecting the game to a back-end cloud platform
are added manually. While the described transformation architecture introduced
extra conflicts resolution time after each model iteration it was compensated by
a lower complexity and a shorted time to market.

The future work will focus on the experimentation and further assessment
of the proposed approach in the industry, with two scenarios: companies that
do not yet use MDD in their practices, to understand if introducing MDD with-
out the disruption of existing development practices lowers the reluctance of
traditional developers towards modeling; companies already applying in-house
domain specific models and code generation techniques, to understand the added
value of a mixed approach between MDD and manual coding.

Acknowledgments. This work has been partially supported by the European
Community, through the H2020 project enCOMPASS (Grant #723059).

16 http://play.google.com/store/apps/details?id=com.eu.funergy



References

1. ECMAScript 6. http://www.ecma-international.org/ecma-262/6.0/
2. Anjorin, A., Lauder, M.P., Schlereth, M., Schürr, A.: Support for bidirectional

model-to-text transformations. ECEASST (2010)
3. Bernaschina, C.: ALMOsT.js: An agile model to model and model to text trans-

formation framework. In: Web Engineering - 17th International Conference, ICWE
(2017)

4. Bernaschina, C., Comai, S., Fraternali, P.: IFMLEdit.org: Model driven rapid pro-
totyping of mobile apps. In: 4th IEEE/ACM International Conference on Mobile
Software Engineering and Systems, MOBILESoft@ICSE (2017)

5. Bernaschina, C., Comai, S., Fraternali, P.: Formal semantics of OMGs Interac-
tion Flow Modeling Language (IFML) for mobile and rich-client application model
driven development. Journal of Systems and Software (2018)

6. Birken, K.: Building code generators for dsls using a partial evaluator for the
xtend language. In: Leveraging Applications of Formal Methods, Verification and
Validation. Technologies for Mastering Change - 6th International Symposium,
ISoLA (2014)

7. Comai, S., Fraternali, P.: A semantic model for specifying data-intensive web ap-
plications using webml. In: Proceedings of SWWS’01, The first Semantic Web
Working Symposium (2001)

8. Garćıa, J., Dı́az, O., Cabot, J.: An adapter-based approach to co-evolve generated
SQL in model-to-text transformations. In: Advanced Information Systems Engi-
neering - 26th International Conference, CAiSE (2014)

9. Goldschmidt, T., Uhl, A.: Retainment policies - A formal framework for change
retainment for trace-based model transformations. Information & Software Tech-
nology (6) (2013)

10. Hall, C.A.: Web presentation layer bootstrapping for accessibility and performance.
In: Proceedings of the International Cross-Disciplinary Conference on Web Acces-
sibility, W4A (2009)

11. Hoisl, B., Sobernig, S.: Towards benchmarking evolution support in model-to-text
transformation systems. In: Proceedings of the 4th Workshop on the Analysis
of Model Transformations co-located with the 18th International Conference on
Model Driven Engineering Languages and Systems, MODELS (2015)

12. Horwitz, S., Prins, J., Reps, T.W.: Integrating non-interfering versions of programs.
In: Conference Record of the Fifteenth Annual ACM Symposium on Principles of
Programming Languages (1988)

13. Kövesdán, G., Asztalos, M., Lengyel, L.: Polymorphic templates: A design pat-
tern for implementing agile model-to-text transformations. In: 3rd Workshop on
Extreme Modeling co-located with ACM/IEEE 17th International Conference on
Model Driven Engineering Languages & Systems, XM@MoDELS (2014)

14. Ogunyomi, B., Rose, L.M., Kolovos, D.S.: Property access traces for source incre-
mental model-to-text transformation. In: Modelling Foundations and Applications
- 11th European Conference, ECMFA (2015)

15. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Upper Saddle
River, NJ, USA, 1st edn. (2001)

16. World Wide Web Consortium (W3C): HTML5. https://www.w3.org/TR/html5/


